Matches in SemOpenAlex for { <https://semopenalex.org/work/W2050875957> ?p ?o ?g. }
- W2050875957 endingPage "2028" @default.
- W2050875957 startingPage "2004" @default.
- W2050875957 abstract "A survey of reports of electrical activity in hurricanes and typhoons from flight notes and personal experience (18 years, >230 eyewall penetrations for R. A. Black; ∼20 years for J. Hallett, plus that of others at the Hurricane Research Division), and perusal of flight notes dating from 1980, show that lightning in and within 100 km or so of the eyewall is usually sparse. However, occasionally, significant electrical activity (>one flash per minute) occurs in or near the eyewall. National Oceanic and Atmospheric Administration WP-3D aircraft penetrations through a number of storms relate the lightning occurrence to strong vertical velocity (>10 m s−1) and the presence of supercooled liquid cloud droplets extending to temperatures below −20°C. Specific measurements of cloud properties during eyewall penetrations show that the supercooled cloud water content increases with upward velocities >∼5.0 m s−1, as does the presence of large (>2 mm) supercooled drops. Measurements at temperatures >−13°C show that the transition of supercooled cloud water to ice along an outward radial in all systems is associated with local electric fields (occasionally >20 kV m−1) and negative charge above positive charge. In systems with stronger vertical velocity there is a larger region of supercooled cloud extending to lower temperatures where charge separation may occur, as judged by the presence of regions containing graupel, small ice, and cloud droplets. The ratio of ice to supercooled water increases radially outward from the eyewall and depends upon altitude (temperature). The spatial distribution of charge is further influenced by the relation of vertical velocity to the radial flow, with the upper charge regions tending to be advected outward. In symmetrical, mature hurricanes, supercooled water usually occurs only in regions at temperatures above about −5°C. The upward transport of supercooled cloud water is limited by a balance between water condensed in the eyewall updraft and its erosion by ice in downdrafts descending in the outward regions of the eyewall. This ice originates from both primary and secondary ice nucleation in the updraft. This is consistent with an exponential increase in ice concentration, as the rate at which the ice particle concentrations increase depends on the production of secondary particles by preexisting graupel, some of which ultimately grow into new graupel, and its outward transport in the anvil flow aloft. Penetrations at temperatures as low as −15°C show the presence of electric fields consistent with specific laboratory-derived criteria for charge separated during ice–graupel collisions, given that a liquid water–dependent sign reversal temperature may occur. Such a reversal may result from either a changing temperature in the vertical, a changing cloud liquid water content in the horizontal, or a combination of the two. Since cloud-to-ground (CG) lightning can be observed with remote detection networks that provide the polarity and frequency of CG lightning, there is potential that hurricane evolution may be detected remotely and that lightning may be usable as an indicator of a change in the storm intensity and/or track." @default.
- W2050875957 created "2016-06-24" @default.
- W2050875957 creator A5049454519 @default.
- W2050875957 creator A5070388484 @default.
- W2050875957 date "1999-06-01" @default.
- W2050875957 modified "2023-10-11" @default.
- W2050875957 title "Electrification of the Hurricane" @default.
- W2050875957 cites W140035477 @default.
- W2050875957 cites W190604309 @default.
- W2050875957 cites W1964872268 @default.
- W2050875957 cites W1965510025 @default.
- W2050875957 cites W1965847272 @default.
- W2050875957 cites W1968184234 @default.
- W2050875957 cites W1973218717 @default.
- W2050875957 cites W1973493464 @default.
- W2050875957 cites W1975933951 @default.
- W2050875957 cites W1979959032 @default.
- W2050875957 cites W1981052895 @default.
- W2050875957 cites W1982001518 @default.
- W2050875957 cites W1984086380 @default.
- W2050875957 cites W1991581745 @default.
- W2050875957 cites W1996267903 @default.
- W2050875957 cites W1997122549 @default.
- W2050875957 cites W2002860799 @default.
- W2050875957 cites W2002898709 @default.
- W2050875957 cites W2005954795 @default.
- W2050875957 cites W2011402564 @default.
- W2050875957 cites W2019194766 @default.
- W2050875957 cites W2021403177 @default.
- W2050875957 cites W2027691330 @default.
- W2050875957 cites W2027697591 @default.
- W2050875957 cites W2030593144 @default.
- W2050875957 cites W2034625011 @default.
- W2050875957 cites W2039125526 @default.
- W2050875957 cites W2042361863 @default.
- W2050875957 cites W2048728345 @default.
- W2050875957 cites W2056275785 @default.
- W2050875957 cites W2059524774 @default.
- W2050875957 cites W2060955666 @default.
- W2050875957 cites W2062233634 @default.
- W2050875957 cites W2065626194 @default.
- W2050875957 cites W2068497386 @default.
- W2050875957 cites W2073735895 @default.
- W2050875957 cites W2082291163 @default.
- W2050875957 cites W2083541723 @default.
- W2050875957 cites W2084118331 @default.
- W2050875957 cites W2089804881 @default.
- W2050875957 cites W2090484859 @default.
- W2050875957 cites W2093659943 @default.
- W2050875957 cites W2104110032 @default.
- W2050875957 cites W2109984465 @default.
- W2050875957 cites W2113906464 @default.
- W2050875957 cites W2132252480 @default.
- W2050875957 cites W2135802305 @default.
- W2050875957 cites W2147957561 @default.
- W2050875957 cites W2159380820 @default.
- W2050875957 cites W2168682651 @default.
- W2050875957 cites W2172565632 @default.
- W2050875957 cites W2176462469 @default.
- W2050875957 cites W2176719471 @default.
- W2050875957 cites W2176903249 @default.
- W2050875957 cites W2246981430 @default.
- W2050875957 doi "https://doi.org/10.1175/1520-0469(1999)056<2004:eoth>2.0.co;2" @default.
- W2050875957 hasPublicationYear "1999" @default.
- W2050875957 type Work @default.
- W2050875957 sameAs 2050875957 @default.
- W2050875957 citedByCount "129" @default.
- W2050875957 countsByYear W20508759572012 @default.
- W2050875957 countsByYear W20508759572013 @default.
- W2050875957 countsByYear W20508759572014 @default.
- W2050875957 countsByYear W20508759572015 @default.
- W2050875957 countsByYear W20508759572016 @default.
- W2050875957 countsByYear W20508759572017 @default.
- W2050875957 countsByYear W20508759572018 @default.
- W2050875957 countsByYear W20508759572019 @default.
- W2050875957 countsByYear W20508759572020 @default.
- W2050875957 countsByYear W20508759572021 @default.
- W2050875957 countsByYear W20508759572022 @default.
- W2050875957 countsByYear W20508759572023 @default.
- W2050875957 crossrefType "journal-article" @default.
- W2050875957 hasAuthorship W2050875957A5049454519 @default.
- W2050875957 hasAuthorship W2050875957A5070388484 @default.
- W2050875957 hasBestOaLocation W20508759571 @default.
- W2050875957 hasConcept C111919701 @default.
- W2050875957 hasConcept C112964491 @default.
- W2050875957 hasConcept C114793014 @default.
- W2050875957 hasConcept C121332964 @default.
- W2050875957 hasConcept C127313418 @default.
- W2050875957 hasConcept C153294291 @default.
- W2050875957 hasConcept C163258240 @default.
- W2050875957 hasConcept C197046000 @default.
- W2050875957 hasConcept C29141058 @default.
- W2050875957 hasConcept C39432304 @default.
- W2050875957 hasConcept C41008148 @default.
- W2050875957 hasConcept C49204034 @default.
- W2050875957 hasConcept C62520636 @default.
- W2050875957 hasConcept C69398868 @default.
- W2050875957 hasConcept C79974875 @default.