Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051202241> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2051202241 endingPage "248" @default.
- W2051202241 startingPage "223" @default.
- W2051202241 abstract "We study effective categoricity of computable abelian groups of the form ⊕ i ∈ ω H , where H is a subgroup of ( Q , + ) . Such groups are called homogeneous completely decomposable. It is well-known that a homogeneous completely decomposable group is computably categorical if and only if its rank is finite. We study Δ n 0 -categoricity in this class of groups, for n > 1 . We introduce a new algebraic concept of S -independence which is a generalization of the well-known notion of p -independence. We develop the theory of S -independent sets. We apply these techniques to show that every homogeneous completely decomposable group is Δ 3 0 -categorical. We prove that a homogeneous completely decomposable group of infinite rank is Δ 2 0 -categorical if and only if it is isomorphic to the free module over the localization of Z by a computably enumerable set of primes P with the semi-low complement (within the set of all primes). We apply these results and techniques to study the complexity of generating bases of computable free modules over localizations of integers, including the free abelian group." @default.
- W2051202241 created "2016-06-24" @default.
- W2051202241 creator A5046893858 @default.
- W2051202241 creator A5071503687 @default.
- W2051202241 date "2013-01-01" @default.
- W2051202241 modified "2023-09-29" @default.
- W2051202241 title "Effectively categorical abelian groups" @default.
- W2051202241 cites W1976264814 @default.
- W2051202241 cites W1989997916 @default.
- W2051202241 cites W2006088999 @default.
- W2051202241 cites W2017531368 @default.
- W2051202241 cites W2029116149 @default.
- W2051202241 cites W2031254612 @default.
- W2051202241 cites W2043078465 @default.
- W2051202241 cites W2059318640 @default.
- W2051202241 cites W2063706894 @default.
- W2051202241 cites W2069890413 @default.
- W2051202241 cites W2070346525 @default.
- W2051202241 cites W2079926883 @default.
- W2051202241 cites W2083738367 @default.
- W2051202241 cites W2084939213 @default.
- W2051202241 cites W2090545214 @default.
- W2051202241 cites W2108939266 @default.
- W2051202241 cites W2134024760 @default.
- W2051202241 cites W2167890881 @default.
- W2051202241 cites W2171894804 @default.
- W2051202241 cites W2318964791 @default.
- W2051202241 cites W27930116 @default.
- W2051202241 cites W2913491534 @default.
- W2051202241 cites W3199165616 @default.
- W2051202241 doi "https://doi.org/10.1016/j.jalgebra.2012.09.020" @default.
- W2051202241 hasPublicationYear "2013" @default.
- W2051202241 type Work @default.
- W2051202241 sameAs 2051202241 @default.
- W2051202241 citedByCount "23" @default.
- W2051202241 countsByYear W20512022412013 @default.
- W2051202241 countsByYear W20512022412014 @default.
- W2051202241 countsByYear W20512022412015 @default.
- W2051202241 countsByYear W20512022412016 @default.
- W2051202241 countsByYear W20512022412017 @default.
- W2051202241 countsByYear W20512022412018 @default.
- W2051202241 countsByYear W20512022412019 @default.
- W2051202241 countsByYear W20512022412020 @default.
- W2051202241 countsByYear W20512022412021 @default.
- W2051202241 crossrefType "journal-article" @default.
- W2051202241 hasAuthorship W2051202241A5046893858 @default.
- W2051202241 hasAuthorship W2051202241A5071503687 @default.
- W2051202241 hasBestOaLocation W20512022411 @default.
- W2051202241 hasConcept C105795698 @default.
- W2051202241 hasConcept C136170076 @default.
- W2051202241 hasConcept C202444582 @default.
- W2051202241 hasConcept C33923547 @default.
- W2051202241 hasConcept C5274069 @default.
- W2051202241 hasConceptScore W2051202241C105795698 @default.
- W2051202241 hasConceptScore W2051202241C136170076 @default.
- W2051202241 hasConceptScore W2051202241C202444582 @default.
- W2051202241 hasConceptScore W2051202241C33923547 @default.
- W2051202241 hasConceptScore W2051202241C5274069 @default.
- W2051202241 hasFunder F4320335369 @default.
- W2051202241 hasLocation W20512022411 @default.
- W2051202241 hasLocation W20512022412 @default.
- W2051202241 hasOpenAccess W2051202241 @default.
- W2051202241 hasPrimaryLocation W20512022411 @default.
- W2051202241 hasRelatedWork W1497986648 @default.
- W2051202241 hasRelatedWork W1678370088 @default.
- W2051202241 hasRelatedWork W1821847917 @default.
- W2051202241 hasRelatedWork W2006990530 @default.
- W2051202241 hasRelatedWork W2021494526 @default.
- W2051202241 hasRelatedWork W2032361691 @default.
- W2051202241 hasRelatedWork W2149376139 @default.
- W2051202241 hasRelatedWork W3083642434 @default.
- W2051202241 hasRelatedWork W776536739 @default.
- W2051202241 hasRelatedWork W2056205479 @default.
- W2051202241 hasVolume "373" @default.
- W2051202241 isParatext "false" @default.
- W2051202241 isRetracted "false" @default.
- W2051202241 magId "2051202241" @default.
- W2051202241 workType "article" @default.