Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051204261> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2051204261 endingPage "2345" @default.
- W2051204261 startingPage "2335" @default.
- W2051204261 abstract "The double phase representation is discussed for the elastic scattering amplitude $A(s, t, u)$ as a function of the covariant Mandelstam variables $s$, $t$, and $u$. This representation is written as $A(s, t, u)=[frac{{P}_{1}(s, t, u)}{{P}_{2}(s, t, u)}]Q(s, t, u)$, where ${P}_{1}(s, t, u)$ and ${P}_{2}(s, t, u)$ are both finite polynomials in $s$, $t$, and $u$, and $Q(s, t, u)$ has no zeros or poles except at infinity and is expressed in terms of the phase of $A(s, t, u)$ along the cuts. Thus, ${P}_{1}(s, t, u)$ and ${P}_{2}(s, t, u)$ account for all the zeros and poles of $A(s, t, u)$, respectively, except for a zero or a pole at infinity. The conditions for the above double phase representation to exist are, besides the usual Mandelstam assumption, that a finite polynomial ${P}_{1}(s, t, u)$ accounts for all the zeros of $A(s, t, u)$ except for the one at infinity and no others, and that $A(s, t, u)$ has even or odd crossing symmetry with respect to the interchange of some pair of $s$, $t$, and $u$. These conditions imply that the phase of $A(s, t, u)$ has no extra branch points in the momentum-transfer plane other than those which belong to $A(s, t, u)$ and remains finite in the physical regions even in the limit of infinite energy. The asymptotic forms of this double phase representation when some of $s$, $t$, and $u$ become infinite are derived in the case when the phase approaches the limit at infinity not too slowly. This is the case when the elastic scattering amplitude exhibits asymptotically a power behavior in energy (usually called the Regge behavior). In particular, the case when the forward peak of high-energy elastic scattering does not shrink is examined closely. The case of no shrinkage is found to be the case when the phase in the crossed channel does not diverge logarithmically at infinity in its momentum-transfer plane. If the forward peak shrinks, the above phase diverges logarithmically at infinity. In the case of no shrinkage, the asymptotic shape of the forward peak is determined solely by the phase in the crossed channel. Furthermore, the above shape assumes a pure exponential function of the covariant momentum-transfer squared when momentum transfer is small, and approaches a power-law behavior in the same variable for large momentum transfer. In the case of the ${ensuremath{pi}}^{0}+{ensuremath{pi}}^{0}ensuremath{rightarrow}{ensuremath{pi}}^{0}+{ensuremath{pi}}^{0}$ amplitude, high symmetry available in this amplitude enables one to determine almost uniquely the polynomials in the double phase representation. In particular, the only possibility in the case of no shrinkage is $frac{{P}_{1}(s, t, u)}{{P}_{2}(s, t, u)}={c}_{0}+{c}_{2}({s}^{2}+{t}^{2}+{u}^{2})$, where ${c}_{0}$ and ${c}_{2}$ are real constants. No shrinkage also implies that the $S$-wave scattering length must not be negative for the ${ensuremath{pi}}^{0}+{ensuremath{pi}}^{0}ensuremath{rightarrow}{ensuremath{pi}}^{0}+{ensuremath{pi}}^{0}$ amplitude. Some of the specific predictions of the phase representation approach to highenergy elastic scattering are listed at the end of the last section." @default.
- W2051204261 created "2016-06-24" @default.
- W2051204261 creator A5053860646 @default.
- W2051204261 creator A5059393323 @default.
- W2051204261 date "1963-09-01" @default.
- W2051204261 modified "2023-10-17" @default.
- W2051204261 title "Double Phase Representation of Analytic Functions" @default.
- W2051204261 cites W2010613918 @default.
- W2051204261 cites W2012019456 @default.
- W2051204261 cites W2014668965 @default.
- W2051204261 cites W2016017355 @default.
- W2051204261 cites W2048582972 @default.
- W2051204261 cites W2067508571 @default.
- W2051204261 cites W2079402291 @default.
- W2051204261 doi "https://doi.org/10.1103/physrev.131.2335" @default.
- W2051204261 hasPublicationYear "1963" @default.
- W2051204261 type Work @default.
- W2051204261 sameAs 2051204261 @default.
- W2051204261 citedByCount "6" @default.
- W2051204261 crossrefType "journal-article" @default.
- W2051204261 hasAuthorship W2051204261A5053860646 @default.
- W2051204261 hasAuthorship W2051204261A5059393323 @default.
- W2051204261 hasBestOaLocation W20512042612 @default.
- W2051204261 hasConcept C114614502 @default.
- W2051204261 hasConcept C121332964 @default.
- W2051204261 hasConcept C134306372 @default.
- W2051204261 hasConcept C138885662 @default.
- W2051204261 hasConcept C14036430 @default.
- W2051204261 hasConcept C153013531 @default.
- W2051204261 hasConcept C180205008 @default.
- W2051204261 hasConcept C184670325 @default.
- W2051204261 hasConcept C2780813799 @default.
- W2051204261 hasConcept C33923547 @default.
- W2051204261 hasConcept C35785888 @default.
- W2051204261 hasConcept C37914503 @default.
- W2051204261 hasConcept C41895202 @default.
- W2051204261 hasConcept C44280652 @default.
- W2051204261 hasConcept C62520636 @default.
- W2051204261 hasConcept C7321624 @default.
- W2051204261 hasConcept C78458016 @default.
- W2051204261 hasConcept C86803240 @default.
- W2051204261 hasConcept C90119067 @default.
- W2051204261 hasConceptScore W2051204261C114614502 @default.
- W2051204261 hasConceptScore W2051204261C121332964 @default.
- W2051204261 hasConceptScore W2051204261C134306372 @default.
- W2051204261 hasConceptScore W2051204261C138885662 @default.
- W2051204261 hasConceptScore W2051204261C14036430 @default.
- W2051204261 hasConceptScore W2051204261C153013531 @default.
- W2051204261 hasConceptScore W2051204261C180205008 @default.
- W2051204261 hasConceptScore W2051204261C184670325 @default.
- W2051204261 hasConceptScore W2051204261C2780813799 @default.
- W2051204261 hasConceptScore W2051204261C33923547 @default.
- W2051204261 hasConceptScore W2051204261C35785888 @default.
- W2051204261 hasConceptScore W2051204261C37914503 @default.
- W2051204261 hasConceptScore W2051204261C41895202 @default.
- W2051204261 hasConceptScore W2051204261C44280652 @default.
- W2051204261 hasConceptScore W2051204261C62520636 @default.
- W2051204261 hasConceptScore W2051204261C7321624 @default.
- W2051204261 hasConceptScore W2051204261C78458016 @default.
- W2051204261 hasConceptScore W2051204261C86803240 @default.
- W2051204261 hasConceptScore W2051204261C90119067 @default.
- W2051204261 hasIssue "5" @default.
- W2051204261 hasLocation W20512042611 @default.
- W2051204261 hasLocation W20512042612 @default.
- W2051204261 hasLocation W20512042613 @default.
- W2051204261 hasOpenAccess W2051204261 @default.
- W2051204261 hasPrimaryLocation W20512042611 @default.
- W2051204261 hasRelatedWork W1514665570 @default.
- W2051204261 hasRelatedWork W2053302663 @default.
- W2051204261 hasRelatedWork W2055489700 @default.
- W2051204261 hasRelatedWork W2072505607 @default.
- W2051204261 hasRelatedWork W2078575841 @default.
- W2051204261 hasRelatedWork W2086725346 @default.
- W2051204261 hasRelatedWork W2285596157 @default.
- W2051204261 hasRelatedWork W3099754578 @default.
- W2051204261 hasRelatedWork W3105714337 @default.
- W2051204261 hasRelatedWork W4226350057 @default.
- W2051204261 hasVolume "131" @default.
- W2051204261 isParatext "false" @default.
- W2051204261 isRetracted "false" @default.
- W2051204261 magId "2051204261" @default.
- W2051204261 workType "article" @default.