Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051214791> ?p ?o ?g. }
- W2051214791 abstract "We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a tree-level improved clover quark action on the anisotropic lattice for arbitrary quark mass by matching the Hamiltonian on the lattice and in the continuum. The heavy quark mass dependence of the improvement coefficients, i.e., the ratio of the hopping parameters $ensuremath{zeta}{=K}_{t}{/K}_{s}$ and the clover coefficients ${c}_{s,t},$ is examined at the tree level, and effects of the choice of the spatial Wilson parameter ${r}_{s}$ are discussed. We then compute the charmonium spectrum in the quenched approximation employing $ensuremath{xi}{=a}_{s}{/a}_{t}=3$ anisotropic lattices. Simulations are made with the standard anisotropic gauge action and the anisotropic clover quark action with ${r}_{s}=1$ at four lattice spacings in the range ${a}_{s}=0.07--0.2 mathrm{fm}.$ The clover coefficients ${c}_{s,t}$ are estimated from tree-level tadpole improvement. On the other hand, for the ratio of the hopping parameters $ensuremath{zeta},$ we adopt both the tree-level tadpole-improved value and a non-perturbative one. The latter employs the condition that the speed of light calculated from the meson energy-momentum relation be unity. We calculate the spectrum of S and P states and their excitations using both the pole and kinetic masses. We find that the combination of the pole mass and the tadpole-improved value of $ensuremath{zeta}$ to yield the smoothest approach to the continuum limit, which we then adopt for the continuum extrapolation of the spectrum. The results largely depend on the scale input even in the continuum limit, showing a quenching effect. When the lattice spacing is determined from the $1Pensuremath{-}1S$ splitting, the deviation from the experimental value is estimated to be $ensuremath{sim}30%$ for the S-state hyperfine splitting and $ensuremath{sim}20%$ for the P-state fine structure. Our results are consistent with previous results at $ensuremath{xi}=2$ obtained by Chen when the lattice spacing is determined from the Sommer scale ${r}_{0}.$ We also address the problem with the hyperfine splitting that different choices of the clover coefficients lead to disagreeing results in the continuum limit. Making a leading order analysis based on potential models we show that a large hyperfine splitting $ensuremath{sim}95 mathrm{MeV}$ obtained by Klassen with a different choice of the clover coefficients is likely an overestimate." @default.
- W2051214791 created "2016-06-24" @default.
- W2051214791 creator A5009274974 @default.
- W2051214791 creator A5017590234 @default.
- W2051214791 creator A5019609864 @default.
- W2051214791 creator A5030762337 @default.
- W2051214791 creator A5031151901 @default.
- W2051214791 creator A5036150395 @default.
- W2051214791 creator A5036803114 @default.
- W2051214791 creator A5039608063 @default.
- W2051214791 creator A5040868021 @default.
- W2051214791 creator A5045230781 @default.
- W2051214791 creator A5047290179 @default.
- W2051214791 creator A5049190367 @default.
- W2051214791 creator A5051914622 @default.
- W2051214791 creator A5065575216 @default.
- W2051214791 creator A5076977651 @default.
- W2051214791 creator A5082767882 @default.
- W2051214791 creator A5085122448 @default.
- W2051214791 creator A5089818516 @default.
- W2051214791 date "2002-04-29" @default.
- W2051214791 modified "2023-10-08" @default.
- W2051214791 title "Charmonium spectrum from quenched anisotropic lattice QCD" @default.
- W2051214791 cites W134798585 @default.
- W2051214791 cites W1967259155 @default.
- W2051214791 cites W1968414256 @default.
- W2051214791 cites W1978987431 @default.
- W2051214791 cites W1979634942 @default.
- W2051214791 cites W1980611424 @default.
- W2051214791 cites W1999655284 @default.
- W2051214791 cites W2000315635 @default.
- W2051214791 cites W2010856807 @default.
- W2051214791 cites W2016823934 @default.
- W2051214791 cites W2022549365 @default.
- W2051214791 cites W2028482822 @default.
- W2051214791 cites W2028566148 @default.
- W2051214791 cites W2038117019 @default.
- W2051214791 cites W2040756284 @default.
- W2051214791 cites W2042051337 @default.
- W2051214791 cites W2051212583 @default.
- W2051214791 cites W2051522346 @default.
- W2051214791 cites W2052409229 @default.
- W2051214791 cites W2058635042 @default.
- W2051214791 cites W2074022604 @default.
- W2051214791 cites W2085047747 @default.
- W2051214791 cites W2097289439 @default.
- W2051214791 cites W2109255696 @default.
- W2051214791 cites W2112702755 @default.
- W2051214791 cites W2115410653 @default.
- W2051214791 cites W2121325311 @default.
- W2051214791 cites W2142370262 @default.
- W2051214791 cites W2153514825 @default.
- W2051214791 cites W2160645328 @default.
- W2051214791 cites W3101385520 @default.
- W2051214791 cites W3104249198 @default.
- W2051214791 doi "https://doi.org/10.1103/physrevd.65.094508" @default.
- W2051214791 hasPublicationYear "2002" @default.
- W2051214791 type Work @default.
- W2051214791 sameAs 2051214791 @default.
- W2051214791 citedByCount "102" @default.
- W2051214791 countsByYear W20512147912012 @default.
- W2051214791 countsByYear W20512147912013 @default.
- W2051214791 countsByYear W20512147912014 @default.
- W2051214791 countsByYear W20512147912015 @default.
- W2051214791 countsByYear W20512147912016 @default.
- W2051214791 countsByYear W20512147912018 @default.
- W2051214791 countsByYear W20512147912019 @default.
- W2051214791 countsByYear W20512147912020 @default.
- W2051214791 countsByYear W20512147912022 @default.
- W2051214791 countsByYear W20512147912023 @default.
- W2051214791 crossrefType "journal-article" @default.
- W2051214791 hasAuthorship W2051214791A5009274974 @default.
- W2051214791 hasAuthorship W2051214791A5017590234 @default.
- W2051214791 hasAuthorship W2051214791A5019609864 @default.
- W2051214791 hasAuthorship W2051214791A5030762337 @default.
- W2051214791 hasAuthorship W2051214791A5031151901 @default.
- W2051214791 hasAuthorship W2051214791A5036150395 @default.
- W2051214791 hasAuthorship W2051214791A5036803114 @default.
- W2051214791 hasAuthorship W2051214791A5039608063 @default.
- W2051214791 hasAuthorship W2051214791A5040868021 @default.
- W2051214791 hasAuthorship W2051214791A5045230781 @default.
- W2051214791 hasAuthorship W2051214791A5047290179 @default.
- W2051214791 hasAuthorship W2051214791A5049190367 @default.
- W2051214791 hasAuthorship W2051214791A5051914622 @default.
- W2051214791 hasAuthorship W2051214791A5065575216 @default.
- W2051214791 hasAuthorship W2051214791A5076977651 @default.
- W2051214791 hasAuthorship W2051214791A5082767882 @default.
- W2051214791 hasAuthorship W2051214791A5085122448 @default.
- W2051214791 hasAuthorship W2051214791A5089818516 @default.
- W2051214791 hasBestOaLocation W20512147912 @default.
- W2051214791 hasConcept C109214941 @default.
- W2051214791 hasConcept C117137515 @default.
- W2051214791 hasConcept C121332964 @default.
- W2051214791 hasConcept C24890656 @default.
- W2051214791 hasConcept C2781204021 @default.
- W2051214791 hasConcept C2781254865 @default.
- W2051214791 hasConcept C37914503 @default.
- W2051214791 hasConcept C3909970 @default.
- W2051214791 hasConcept C42238305 @default.
- W2051214791 hasConcept C62520636 @default.