Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051218226> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2051218226 endingPage "614" @default.
- W2051218226 startingPage "609" @default.
- W2051218226 abstract "The problem is considered of the convergence of stochastic approximation procedures /1,2/ for seeking the zero of a function under the condition that the values of this function, accessible to measurement, contain both external as well as internal perturbations. The statement of this problem differs from the most prevalent ones in that the assumptions on the independence and additivity of the noise are waived. The proof of the convergence is based on the use of stochastic Liapunov functions /3 –6/. Discrete stochastic approximation procedures under dependent measurements were examined, for instance, in /7,8/ with another way of accounting for the perturbations and by other methods. The majority of papers on the study of stochastic programming /9/ and stochastic approximation procedures assume the independence of the measurements and the additivity of the noise. Without disparaging such an approach, it should be emphasized that it does not exhaust all varieties of problems whose study might lead to stochastic approximation procedures. In particular, if the measurements are made sufficiently often or, even more so, continuously, then the assumption of dependence of the measurements proves to be very natural, specially if the noise realize parametric perturbations of the system. Other examples, not covered in the scheme of independent measurements, are the problems of adaptive control, of observation, of estimation /10/. There are comparatively few papers (see /7,8/, for example) where the convergence of gradient procedures of extremum search is proved in the presence of additive Markov noise. Conditions are formulated in the present paper on the convergence of stochastic approximation procedures under the condition that the measurements contain both additive as well as nonadditive (internal) Markov perturbations. The analysis is restricted to procedures of the Robbins-Monroe type, mainly in the continuous version." @default.
- W2051218226 created "2016-06-24" @default.
- W2051218226 creator A5045427983 @default.
- W2051218226 date "1981-01-01" @default.
- W2051218226 modified "2023-09-26" @default.
- W2051218226 title "On the convergence of stochastic approximation procedures under markov noise in the measurements" @default.
- W2051218226 cites W1498711961 @default.
- W2051218226 cites W1554532768 @default.
- W2051218226 cites W2008539673 @default.
- W2051218226 cites W2325390432 @default.
- W2051218226 cites W2336878578 @default.
- W2051218226 cites W2798579099 @default.
- W2051218226 cites W2799137445 @default.
- W2051218226 doi "https://doi.org/10.1016/0021-8928(81)90141-6" @default.
- W2051218226 hasPublicationYear "1981" @default.
- W2051218226 type Work @default.
- W2051218226 sameAs 2051218226 @default.
- W2051218226 citedByCount "0" @default.
- W2051218226 crossrefType "journal-article" @default.
- W2051218226 hasAuthorship W2051218226A5045427983 @default.
- W2051218226 hasConcept C105795698 @default.
- W2051218226 hasConcept C115961682 @default.
- W2051218226 hasConcept C117251300 @default.
- W2051218226 hasConcept C126255220 @default.
- W2051218226 hasConcept C14036430 @default.
- W2051218226 hasConcept C154945302 @default.
- W2051218226 hasConcept C162324750 @default.
- W2051218226 hasConcept C26517878 @default.
- W2051218226 hasConcept C2777303404 @default.
- W2051218226 hasConcept C28826006 @default.
- W2051218226 hasConcept C33923547 @default.
- W2051218226 hasConcept C35651441 @default.
- W2051218226 hasConcept C38652104 @default.
- W2051218226 hasConcept C41008148 @default.
- W2051218226 hasConcept C50522688 @default.
- W2051218226 hasConcept C55479107 @default.
- W2051218226 hasConcept C78458016 @default.
- W2051218226 hasConcept C86803240 @default.
- W2051218226 hasConcept C98763669 @default.
- W2051218226 hasConcept C99498987 @default.
- W2051218226 hasConceptScore W2051218226C105795698 @default.
- W2051218226 hasConceptScore W2051218226C115961682 @default.
- W2051218226 hasConceptScore W2051218226C117251300 @default.
- W2051218226 hasConceptScore W2051218226C126255220 @default.
- W2051218226 hasConceptScore W2051218226C14036430 @default.
- W2051218226 hasConceptScore W2051218226C154945302 @default.
- W2051218226 hasConceptScore W2051218226C162324750 @default.
- W2051218226 hasConceptScore W2051218226C26517878 @default.
- W2051218226 hasConceptScore W2051218226C2777303404 @default.
- W2051218226 hasConceptScore W2051218226C28826006 @default.
- W2051218226 hasConceptScore W2051218226C33923547 @default.
- W2051218226 hasConceptScore W2051218226C35651441 @default.
- W2051218226 hasConceptScore W2051218226C38652104 @default.
- W2051218226 hasConceptScore W2051218226C41008148 @default.
- W2051218226 hasConceptScore W2051218226C50522688 @default.
- W2051218226 hasConceptScore W2051218226C55479107 @default.
- W2051218226 hasConceptScore W2051218226C78458016 @default.
- W2051218226 hasConceptScore W2051218226C86803240 @default.
- W2051218226 hasConceptScore W2051218226C98763669 @default.
- W2051218226 hasConceptScore W2051218226C99498987 @default.
- W2051218226 hasIssue "5" @default.
- W2051218226 hasLocation W20512182261 @default.
- W2051218226 hasOpenAccess W2051218226 @default.
- W2051218226 hasPrimaryLocation W20512182261 @default.
- W2051218226 hasRelatedWork W2026908351 @default.
- W2051218226 hasRelatedWork W2041721334 @default.
- W2051218226 hasRelatedWork W2046624619 @default.
- W2051218226 hasRelatedWork W2056512085 @default.
- W2051218226 hasRelatedWork W2062589734 @default.
- W2051218226 hasRelatedWork W2128702080 @default.
- W2051218226 hasRelatedWork W2147008269 @default.
- W2051218226 hasRelatedWork W2334736255 @default.
- W2051218226 hasRelatedWork W2887605710 @default.
- W2051218226 hasRelatedWork W2162861848 @default.
- W2051218226 hasVolume "45" @default.
- W2051218226 isParatext "false" @default.
- W2051218226 isRetracted "false" @default.
- W2051218226 magId "2051218226" @default.
- W2051218226 workType "article" @default.