Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051227373> ?p ?o ?g. }
- W2051227373 endingPage "179" @default.
- W2051227373 startingPage "171" @default.
- W2051227373 abstract "The EF hand, a helix-loop-helix structure, is one of the most common motifs found in animal genomes, and EF-hand Ca(2+)-binding proteins (EFCaBPs) are widely distributed throughout the cell. However, researchers remain confounded by a lack of understanding of how peptide sequences code for specific functions and by uncertainty about the molecular mechanisms that enable EFCaBPs to distinguish among many diverse cellular targets. Such knowledge could define the roles of EFCaBPs in health and disease and ultimately enable control or even design of Ca(2+)-dependent functions in medicine and biotechnology. In this Account, we describe our structural and biochemical research designed to understand the sequence-to-function relationship in EFCaBPs. The first structural goal was to define conformational changes induced by binding Ca(2+), and our group and others established that solution NMR spectroscopy is well suited for this task. We pinpointed residues critical to the differences in Ca(2+) response of calbindin D(9k) and calmodulin (CaM), homologous EFCaBPs from different functional classes, by using direct structure determination with site-directed mutagenesis and protein engineering. Structure combined with biochemistry provided the foundation for identifying the fundamental mechanism of cooperativity in the binding of Ca(2+) ions: this cooperativity provides EFCaBPs with the ability to detect the relatively small changes in concentration that constitute Ca(2+) signals. Using calbindin D(9k) as a model system, studies of the structure and fast time scale dynamics of each of the four ion binding states in a typical EF-hand domain provided direct evidence that site-site communication lowers the free energy cost of reorganization for binding the second ion. Our work has also extended models of how EFCaBPs interact with their cellular targets. We determined the unique dimeric architecture of S100 proteins, a specialized subfamily of EFCaBPs found exclusively in vertebrates. We described the implications for how these proteins transduce signals and went on to characterize interactions with peptide fragments of important cellular targets. Studies of the CaM homolog centrin revealed novel characteristics of its binding of Ca(2+) and its interaction with its cellular target Kar1. These results provided clear examples of how subtle differences in sequence fine-tune EFCaBPs to interact with their specific targets. The structural approach stands at a critical crossroad, shifting in emphasis from descriptive structural biochemistry to integrated biology and medicine. We present our dual-molecular-switch model for Ca(2+) regulation of gating functions of voltage-gated sodium channels in which both CaM and an intrinsic EF-hand domain serve as coupled Ca(2+) sensors. A second example involves novel EFCaBP extracellular function, that is, the role of S100A8/S100A9 heterodimer in the innate immune response to bacterial pathogens. A mechanism for the antimicrobial activity of S100A8/S100A9 was discovered. We describe interactions of S100A8/S100A9 and S100B with the cell surface receptor for advanced glycation end products. Biochemical and structural studies are now uncovering the mechanisms by which EFCaBPs work and are helping to define their biological activities, while simultaneously expanding knowledge of the roles of these proteins in normal cellular physiology and the pathology of disease." @default.
- W2051227373 created "2016-06-24" @default.
- W2051227373 creator A5003392314 @default.
- W2051227373 date "2011-02-11" @default.
- W2051227373 modified "2023-09-23" @default.
- W2051227373 title "Relating Form and Function of EF-Hand Calcium Binding Proteins" @default.
- W2051227373 cites W1561852216 @default.
- W2051227373 cites W1571243084 @default.
- W2051227373 cites W1767701883 @default.
- W2051227373 cites W1788894661 @default.
- W2051227373 cites W184793376 @default.
- W2051227373 cites W1870708516 @default.
- W2051227373 cites W1967060390 @default.
- W2051227373 cites W1969765265 @default.
- W2051227373 cites W1972185047 @default.
- W2051227373 cites W1978249496 @default.
- W2051227373 cites W1982176828 @default.
- W2051227373 cites W1986980270 @default.
- W2051227373 cites W1992891836 @default.
- W2051227373 cites W1995166771 @default.
- W2051227373 cites W1996943772 @default.
- W2051227373 cites W1998813486 @default.
- W2051227373 cites W2001281147 @default.
- W2051227373 cites W2014377124 @default.
- W2051227373 cites W2017370679 @default.
- W2051227373 cites W2022001968 @default.
- W2051227373 cites W2024305349 @default.
- W2051227373 cites W2028600729 @default.
- W2051227373 cites W2029870632 @default.
- W2051227373 cites W2034252508 @default.
- W2051227373 cites W2034373769 @default.
- W2051227373 cites W2035070309 @default.
- W2051227373 cites W2039780464 @default.
- W2051227373 cites W2041278117 @default.
- W2051227373 cites W2041740456 @default.
- W2051227373 cites W2049501622 @default.
- W2051227373 cites W2050755997 @default.
- W2051227373 cites W2054412550 @default.
- W2051227373 cites W2064200041 @default.
- W2051227373 cites W2065140692 @default.
- W2051227373 cites W2065628212 @default.
- W2051227373 cites W2073205505 @default.
- W2051227373 cites W2074967874 @default.
- W2051227373 cites W2080178091 @default.
- W2051227373 cites W2084751368 @default.
- W2051227373 cites W2096716204 @default.
- W2051227373 cites W2100922563 @default.
- W2051227373 cites W2101044821 @default.
- W2051227373 cites W2101254765 @default.
- W2051227373 cites W2102685605 @default.
- W2051227373 cites W2103581039 @default.
- W2051227373 cites W2113602217 @default.
- W2051227373 cites W2116794323 @default.
- W2051227373 cites W2123404680 @default.
- W2051227373 cites W2126551164 @default.
- W2051227373 cites W2131093518 @default.
- W2051227373 cites W2131624747 @default.
- W2051227373 cites W2134805280 @default.
- W2051227373 cites W2135600128 @default.
- W2051227373 cites W2137517897 @default.
- W2051227373 cites W2139183106 @default.
- W2051227373 cites W2141268830 @default.
- W2051227373 cites W2149893493 @default.
- W2051227373 cites W2166229584 @default.
- W2051227373 cites W2167646683 @default.
- W2051227373 cites W2241681832 @default.
- W2051227373 cites W2953365978 @default.
- W2051227373 doi "https://doi.org/10.1021/ar100110d" @default.
- W2051227373 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3059389" @default.
- W2051227373 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21314091" @default.
- W2051227373 hasPublicationYear "2011" @default.
- W2051227373 type Work @default.
- W2051227373 sameAs 2051227373 @default.
- W2051227373 citedByCount "112" @default.
- W2051227373 countsByYear W20512273732012 @default.
- W2051227373 countsByYear W20512273732013 @default.
- W2051227373 countsByYear W20512273732014 @default.
- W2051227373 countsByYear W20512273732015 @default.
- W2051227373 countsByYear W20512273732016 @default.
- W2051227373 countsByYear W20512273732017 @default.
- W2051227373 countsByYear W20512273732018 @default.
- W2051227373 countsByYear W20512273732019 @default.
- W2051227373 countsByYear W20512273732020 @default.
- W2051227373 countsByYear W20512273732021 @default.
- W2051227373 countsByYear W20512273732022 @default.
- W2051227373 countsByYear W20512273732023 @default.
- W2051227373 crossrefType "journal-article" @default.
- W2051227373 hasAuthorship W2051227373A5003392314 @default.
- W2051227373 hasBestOaLocation W20512273732 @default.
- W2051227373 hasConcept C104317684 @default.
- W2051227373 hasConcept C107824862 @default.
- W2051227373 hasConcept C122229402 @default.
- W2051227373 hasConcept C12554922 @default.
- W2051227373 hasConcept C14036430 @default.
- W2051227373 hasConcept C16318435 @default.
- W2051227373 hasConcept C166014724 @default.
- W2051227373 hasConcept C178180057 @default.
- W2051227373 hasConcept C178790620 @default.