Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051265083> ?p ?o ?g. }
- W2051265083 endingPage "30" @default.
- W2051265083 startingPage "23" @default.
- W2051265083 abstract "Extreme learning machines are randomly initialized single-hidden layer feed-forward neural networks where the training is restricted to the output weights in order to achieve fast learning with good performance. This contribution shows how batch intrinsic plasticity, a novel and efficient scheme for input specific tuning of non-linear transfer functions, and ridge regression can be combined to optimize extreme learning machines without searching for a suitable hidden layer size. We show that our scheme achieves excellent performance on a number of standard regression tasks and regression applications from robotics." @default.
- W2051265083 created "2016-06-24" @default.
- W2051265083 creator A5023545882 @default.
- W2051265083 creator A5085055595 @default.
- W2051265083 date "2013-02-01" @default.
- W2051265083 modified "2023-10-03" @default.
- W2051265083 title "Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity" @default.
- W2051265083 cites W1556929283 @default.
- W2051265083 cites W1883192700 @default.
- W2051265083 cites W1965555277 @default.
- W2051265083 cites W1974511160 @default.
- W2051265083 cites W1993717606 @default.
- W2051265083 cites W1996640396 @default.
- W2051265083 cites W2019718627 @default.
- W2051265083 cites W2026131661 @default.
- W2051265083 cites W2038625427 @default.
- W2051265083 cites W2047431064 @default.
- W2051265083 cites W2096987757 @default.
- W2051265083 cites W2111072639 @default.
- W2051265083 cites W2111406701 @default.
- W2051265083 cites W2113902808 @default.
- W2051265083 cites W2122040390 @default.
- W2051265083 cites W2137939562 @default.
- W2051265083 cites W2141695047 @default.
- W2051265083 cites W2154852616 @default.
- W2051265083 doi "https://doi.org/10.1016/j.neucom.2012.01.041" @default.
- W2051265083 hasPublicationYear "2013" @default.
- W2051265083 type Work @default.
- W2051265083 sameAs 2051265083 @default.
- W2051265083 citedByCount "37" @default.
- W2051265083 countsByYear W20512650832012 @default.
- W2051265083 countsByYear W20512650832013 @default.
- W2051265083 countsByYear W20512650832014 @default.
- W2051265083 countsByYear W20512650832015 @default.
- W2051265083 countsByYear W20512650832016 @default.
- W2051265083 countsByYear W20512650832017 @default.
- W2051265083 countsByYear W20512650832018 @default.
- W2051265083 countsByYear W20512650832019 @default.
- W2051265083 countsByYear W20512650832020 @default.
- W2051265083 countsByYear W20512650832021 @default.
- W2051265083 countsByYear W20512650832022 @default.
- W2051265083 countsByYear W20512650832023 @default.
- W2051265083 crossrefType "journal-article" @default.
- W2051265083 hasAuthorship W2051265083A5023545882 @default.
- W2051265083 hasAuthorship W2051265083A5085055595 @default.
- W2051265083 hasBestOaLocation W20512650832 @default.
- W2051265083 hasConcept C105795698 @default.
- W2051265083 hasConcept C115903097 @default.
- W2051265083 hasConcept C119857082 @default.
- W2051265083 hasConcept C134306372 @default.
- W2051265083 hasConcept C150899416 @default.
- W2051265083 hasConcept C151730666 @default.
- W2051265083 hasConcept C154945302 @default.
- W2051265083 hasConcept C178790620 @default.
- W2051265083 hasConcept C185592680 @default.
- W2051265083 hasConcept C2779227376 @default.
- W2051265083 hasConcept C2780150128 @default.
- W2051265083 hasConcept C32277403 @default.
- W2051265083 hasConcept C33923547 @default.
- W2051265083 hasConcept C41008148 @default.
- W2051265083 hasConcept C50644808 @default.
- W2051265083 hasConcept C77618280 @default.
- W2051265083 hasConcept C83546350 @default.
- W2051265083 hasConcept C86803240 @default.
- W2051265083 hasConceptScore W2051265083C105795698 @default.
- W2051265083 hasConceptScore W2051265083C115903097 @default.
- W2051265083 hasConceptScore W2051265083C119857082 @default.
- W2051265083 hasConceptScore W2051265083C134306372 @default.
- W2051265083 hasConceptScore W2051265083C150899416 @default.
- W2051265083 hasConceptScore W2051265083C151730666 @default.
- W2051265083 hasConceptScore W2051265083C154945302 @default.
- W2051265083 hasConceptScore W2051265083C178790620 @default.
- W2051265083 hasConceptScore W2051265083C185592680 @default.
- W2051265083 hasConceptScore W2051265083C2779227376 @default.
- W2051265083 hasConceptScore W2051265083C2780150128 @default.
- W2051265083 hasConceptScore W2051265083C32277403 @default.
- W2051265083 hasConceptScore W2051265083C33923547 @default.
- W2051265083 hasConceptScore W2051265083C41008148 @default.
- W2051265083 hasConceptScore W2051265083C50644808 @default.
- W2051265083 hasConceptScore W2051265083C77618280 @default.
- W2051265083 hasConceptScore W2051265083C83546350 @default.
- W2051265083 hasConceptScore W2051265083C86803240 @default.
- W2051265083 hasLocation W20512650831 @default.
- W2051265083 hasLocation W20512650832 @default.
- W2051265083 hasLocation W20512650833 @default.
- W2051265083 hasOpenAccess W2051265083 @default.
- W2051265083 hasPrimaryLocation W20512650831 @default.
- W2051265083 hasRelatedWork W1525510058 @default.
- W2051265083 hasRelatedWork W2960456850 @default.
- W2051265083 hasRelatedWork W2969890106 @default.
- W2051265083 hasRelatedWork W3021430260 @default.
- W2051265083 hasRelatedWork W3196155444 @default.
- W2051265083 hasRelatedWork W4281645081 @default.
- W2051265083 hasRelatedWork W4306321456 @default.
- W2051265083 hasRelatedWork W4308262314 @default.
- W2051265083 hasRelatedWork W4382286161 @default.
- W2051265083 hasRelatedWork W4386213806 @default.
- W2051265083 hasVolume "102" @default.