Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051265766> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2051265766 abstract "Purpose: To develop a planning prediction model based on patient geometry and dose-volume endpoins from previously treated cases; to devise an automated volumetric modulated arc therapy (VMAT) planning for future cases. Methods: Thirty cervical patients were included for this retrospective study, including22 patients fortraining cohort and 8 for testing cohort. For each patient in the training cohort, a VMAT plan with two full arcs weregenerated using a clinical plan template. The relative volume of the selected organ-at-risks (OARs) within a specified margin of the PTV(Lx) were extracted from overlap volume histograms (OVHs). A prediction model at 2D dose-distance (Lx, Dx) grid were established using a linear regression model. For the testing cohort,the model predicted DVH endpoints were used as constraints to automatically generate a new VMAT plan, the new plans were evaluated against the original plans. Results: On average, the prediction doses of rectum, bladder and bowel were 1.13Gy, 2.09Gy, 0.81Gy lower than the manual VMAT plans at predicted DVH endpoints. The auto plan showed slightly lower PTV conformity,CI = 1.18(auto) vs CI =1.12(manual) and almost the same PTV uniformity (UI= 0.17(auto) vs UI=0.18(manual)). V40 of rectum and bladder and V30 of bowelfrom auto plan were reduced by 2.36%, 13.56% and 4.36%, respectively. Mean doses of the rectum, bladder and bowel reduced 0.35Gy, 2.17Gy and 1.08Gy, respectively, as compard with the manual plans. Conclusion: The experience-based prediction model has demonstrated the ability as a plan quality control tool to further improve OARs dose constrains setting in optimization process, butoffers a potential method for generating automatic VMAT plans which significantly improve theplanqualityand planning efficiency." @default.
- W2051265766 created "2016-06-24" @default.
- W2051265766 creator A5010597355 @default.
- W2051265766 creator A5027861145 @default.
- W2051265766 creator A5055323200 @default.
- W2051265766 creator A5069207734 @default.
- W2051265766 date "2014-05-29" @default.
- W2051265766 modified "2023-09-22" @default.
- W2051265766 title "SU-E-T-177: Experience Based Predicition Model For Automated VMAT Planning: A Cervical Cancer Application" @default.
- W2051265766 doi "https://doi.org/10.1118/1.4888507" @default.
- W2051265766 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28037036" @default.
- W2051265766 hasPublicationYear "2014" @default.
- W2051265766 type Work @default.
- W2051265766 sameAs 2051265766 @default.
- W2051265766 citedByCount "0" @default.
- W2051265766 crossrefType "journal-article" @default.
- W2051265766 hasAuthorship W2051265766A5010597355 @default.
- W2051265766 hasAuthorship W2051265766A5027861145 @default.
- W2051265766 hasAuthorship W2051265766A5055323200 @default.
- W2051265766 hasAuthorship W2051265766A5069207734 @default.
- W2051265766 hasConcept C121608353 @default.
- W2051265766 hasConcept C126322002 @default.
- W2051265766 hasConcept C126838900 @default.
- W2051265766 hasConcept C141071460 @default.
- W2051265766 hasConcept C19527891 @default.
- W2051265766 hasConcept C201645570 @default.
- W2051265766 hasConcept C2778220009 @default.
- W2051265766 hasConcept C2781074409 @default.
- W2051265766 hasConcept C2989005 @default.
- W2051265766 hasConcept C509974204 @default.
- W2051265766 hasConcept C71924100 @default.
- W2051265766 hasConcept C72563966 @default.
- W2051265766 hasConceptScore W2051265766C121608353 @default.
- W2051265766 hasConceptScore W2051265766C126322002 @default.
- W2051265766 hasConceptScore W2051265766C126838900 @default.
- W2051265766 hasConceptScore W2051265766C141071460 @default.
- W2051265766 hasConceptScore W2051265766C19527891 @default.
- W2051265766 hasConceptScore W2051265766C201645570 @default.
- W2051265766 hasConceptScore W2051265766C2778220009 @default.
- W2051265766 hasConceptScore W2051265766C2781074409 @default.
- W2051265766 hasConceptScore W2051265766C2989005 @default.
- W2051265766 hasConceptScore W2051265766C509974204 @default.
- W2051265766 hasConceptScore W2051265766C71924100 @default.
- W2051265766 hasConceptScore W2051265766C72563966 @default.
- W2051265766 hasLocation W20512657661 @default.
- W2051265766 hasOpenAccess W2051265766 @default.
- W2051265766 hasPrimaryLocation W20512657661 @default.
- W2051265766 hasRelatedWork W1021401636 @default.
- W2051265766 hasRelatedWork W1978158285 @default.
- W2051265766 hasRelatedWork W2004235052 @default.
- W2051265766 hasRelatedWork W2165018237 @default.
- W2051265766 hasRelatedWork W2467637646 @default.
- W2051265766 hasRelatedWork W2468606594 @default.
- W2051265766 hasRelatedWork W2564719186 @default.
- W2051265766 hasRelatedWork W2608000707 @default.
- W2051265766 hasRelatedWork W2735636428 @default.
- W2051265766 hasRelatedWork W2737645686 @default.
- W2051265766 hasRelatedWork W2766676721 @default.
- W2051265766 hasRelatedWork W2769607416 @default.
- W2051265766 hasRelatedWork W2910581963 @default.
- W2051265766 hasRelatedWork W2966450142 @default.
- W2051265766 hasRelatedWork W2993375984 @default.
- W2051265766 hasRelatedWork W3000750595 @default.
- W2051265766 hasRelatedWork W3028596140 @default.
- W2051265766 hasRelatedWork W3028867648 @default.
- W2051265766 hasRelatedWork W3093100793 @default.
- W2051265766 hasRelatedWork W957768422 @default.
- W2051265766 isParatext "false" @default.
- W2051265766 isRetracted "false" @default.
- W2051265766 magId "2051265766" @default.
- W2051265766 workType "article" @default.