Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051266733> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2051266733 abstract "Abstract Drilling industry encounters various challenges during planning and drilling a new well. There are numerous parameters related to drilling operations that are planned and adjusted as drilling advances. Among them, bit selection is one of the most influential considerations for planning and constructing a new borehole. Conventional bit selections are mostly based on drillers' experiences in the field or mathematical equations which stand more on recorded performances of similar bits from offset wells. It is evident that these sophisticated interrelations between parameters never can be stated in a single mathematical equation. In such intricate cases, utilizing virtual intelligence and Artificial Neural Networks (ANNs) is proven to be worthwhile in understanding complex relationships between variables. In this paper, two models are developed with high competence and utilizing ANNs. The first model provides appropriate drilling bit selection based on desired ROP to be obtained by applying specific drilling parameters. The second model uses proper drilling parameters obtained from optimizing procedure to select drilling bit which provides maximum achievable ROP. Meanwhile, Genetic Algorithm (GA), as a class of optimizing methods for complex functions, is applied. The proposed methods assess the current conditions of drilling system to optimize the effectiveness of drilling, while reducing the probability of early wear of the drill bit. The correlation coefficients for predicted bit types and optimum drilling parameters in testing the obtained networks are 0.95 and 0.90, respectively. The proposed methodology opens new opportunities for real-time and in-field drilling optimization that can be efficiently implemented within the span of the existing drilling practice." @default.
- W2051266733 created "2016-06-24" @default.
- W2051266733 creator A5078830068 @default.
- W2051266733 creator A5081553096 @default.
- W2051266733 date "2013-03-26" @default.
- W2051266733 modified "2023-09-24" @default.
- W2051266733 title "Soft Computation Application to Optimize Drilling Bit Selection Utilizing Virtual Inteligence and Genetic Algorithms" @default.
- W2051266733 doi "https://doi.org/10.2523/iptc-16446-ms" @default.
- W2051266733 hasPublicationYear "2013" @default.
- W2051266733 type Work @default.
- W2051266733 sameAs 2051266733 @default.
- W2051266733 citedByCount "6" @default.
- W2051266733 countsByYear W20512667332014 @default.
- W2051266733 countsByYear W20512667332015 @default.
- W2051266733 countsByYear W20512667332019 @default.
- W2051266733 countsByYear W20512667332020 @default.
- W2051266733 countsByYear W20512667332021 @default.
- W2051266733 crossrefType "proceedings-article" @default.
- W2051266733 hasAuthorship W2051266733A5078830068 @default.
- W2051266733 hasAuthorship W2051266733A5081553096 @default.
- W2051266733 hasConcept C11413529 @default.
- W2051266733 hasConcept C117011727 @default.
- W2051266733 hasConcept C119857082 @default.
- W2051266733 hasConcept C127413603 @default.
- W2051266733 hasConcept C154945302 @default.
- W2051266733 hasConcept C25197100 @default.
- W2051266733 hasConcept C2778382975 @default.
- W2051266733 hasConcept C38652104 @default.
- W2051266733 hasConcept C41008148 @default.
- W2051266733 hasConcept C45374587 @default.
- W2051266733 hasConcept C50644808 @default.
- W2051266733 hasConcept C78519656 @default.
- W2051266733 hasConcept C81917197 @default.
- W2051266733 hasConcept C8880873 @default.
- W2051266733 hasConceptScore W2051266733C11413529 @default.
- W2051266733 hasConceptScore W2051266733C117011727 @default.
- W2051266733 hasConceptScore W2051266733C119857082 @default.
- W2051266733 hasConceptScore W2051266733C127413603 @default.
- W2051266733 hasConceptScore W2051266733C154945302 @default.
- W2051266733 hasConceptScore W2051266733C25197100 @default.
- W2051266733 hasConceptScore W2051266733C2778382975 @default.
- W2051266733 hasConceptScore W2051266733C38652104 @default.
- W2051266733 hasConceptScore W2051266733C41008148 @default.
- W2051266733 hasConceptScore W2051266733C45374587 @default.
- W2051266733 hasConceptScore W2051266733C50644808 @default.
- W2051266733 hasConceptScore W2051266733C78519656 @default.
- W2051266733 hasConceptScore W2051266733C81917197 @default.
- W2051266733 hasConceptScore W2051266733C8880873 @default.
- W2051266733 hasLocation W20512667331 @default.
- W2051266733 hasOpenAccess W2051266733 @default.
- W2051266733 hasPrimaryLocation W20512667331 @default.
- W2051266733 hasRelatedWork W1983693735 @default.
- W2051266733 hasRelatedWork W1991186477 @default.
- W2051266733 hasRelatedWork W1991525511 @default.
- W2051266733 hasRelatedWork W2065435314 @default.
- W2051266733 hasRelatedWork W2157069504 @default.
- W2051266733 hasRelatedWork W2355604212 @default.
- W2051266733 hasRelatedWork W2367361209 @default.
- W2051266733 hasRelatedWork W2516350343 @default.
- W2051266733 hasRelatedWork W2561820553 @default.
- W2051266733 hasRelatedWork W2888090054 @default.
- W2051266733 hasRelatedWork W2888280052 @default.
- W2051266733 hasRelatedWork W2888449505 @default.
- W2051266733 hasRelatedWork W2888767582 @default.
- W2051266733 hasRelatedWork W2894590417 @default.
- W2051266733 hasRelatedWork W2896330272 @default.
- W2051266733 hasRelatedWork W2935955636 @default.
- W2051266733 hasRelatedWork W3006005290 @default.
- W2051266733 hasRelatedWork W3115684924 @default.
- W2051266733 hasRelatedWork W2285449771 @default.
- W2051266733 hasRelatedWork W2737144682 @default.
- W2051266733 isParatext "false" @default.
- W2051266733 isRetracted "false" @default.
- W2051266733 magId "2051266733" @default.
- W2051266733 workType "article" @default.