Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051267172> ?p ?o ?g. }
- W2051267172 abstract "This paper describes a procedure to measure the performance of detection and isolation of multiple faults in gas turbines using artificial neural network and optimization techniques. It is on a particular form of artificial neural networks, the traditional multi-layer perceptron (MLP). Error back-propagation and different activation functions are used. The main goal is to recognize single, double and triple faults in a turboshaft engine, whose performance data were output from a gas turbine simulator program, tuned to represent the engine running at an existing power station. MLP network is a nonlinear interpolation function usually made of input layer, hidden-layer and output-layer, with different neuronal units, but in this work, only one hidden-layer was used. Weights were altered by error back-propagation from the initial values established from a seed fixed between 0 and 1. The activation function in the MLP algorithm is the sigmoid function. The best moment to stop the training process and avoid the over fitting problem was chosen by cross-validation. Optimization of convergence error was achieved using the momentum criteria and reducing the oscillation problem in all nets trained. Several configurations of the neural network have been compared and evaluated, using several noise graduations incorporated to the data, aiming at finding the network most suitable to detect and isolate multiple faults in gas turbines. Based on the results obtained it is inferred that the procedure reported herein may be applied to actual systems in order to assist in maintenance programs, at least." @default.
- W2051267172 created "2016-06-24" @default.
- W2051267172 creator A5012320925 @default.
- W2051267172 creator A5039686719 @default.
- W2051267172 creator A5073369154 @default.
- W2051267172 creator A5075995871 @default.
- W2051267172 date "2009-01-01" @default.
- W2051267172 modified "2023-10-16" @default.
- W2051267172 title "Multiple Faults Detection of Gas Turbine by MLP Neural Network" @default.
- W2051267172 cites W1515591215 @default.
- W2051267172 cites W1558767199 @default.
- W2051267172 cites W1586166474 @default.
- W2051267172 cites W16116901 @default.
- W2051267172 cites W1969248332 @default.
- W2051267172 cites W2055318908 @default.
- W2051267172 cites W2072572638 @default.
- W2051267172 cites W2073162239 @default.
- W2051267172 cites W2091582285 @default.
- W2051267172 cites W2316190853 @default.
- W2051267172 cites W2474798627 @default.
- W2051267172 cites W2479623078 @default.
- W2051267172 cites W3166802321 @default.
- W2051267172 cites W585987605 @default.
- W2051267172 doi "https://doi.org/10.1115/gt2009-59964" @default.
- W2051267172 hasPublicationYear "2009" @default.
- W2051267172 type Work @default.
- W2051267172 sameAs 2051267172 @default.
- W2051267172 citedByCount "6" @default.
- W2051267172 countsByYear W20512671722013 @default.
- W2051267172 countsByYear W20512671722016 @default.
- W2051267172 countsByYear W20512671722018 @default.
- W2051267172 countsByYear W20512671722023 @default.
- W2051267172 crossrefType "proceedings-article" @default.
- W2051267172 hasAuthorship W2051267172A5012320925 @default.
- W2051267172 hasAuthorship W2051267172A5039686719 @default.
- W2051267172 hasAuthorship W2051267172A5073369154 @default.
- W2051267172 hasAuthorship W2051267172A5075995871 @default.
- W2051267172 hasConcept C104114177 @default.
- W2051267172 hasConcept C11413529 @default.
- W2051267172 hasConcept C115961682 @default.
- W2051267172 hasConcept C127413603 @default.
- W2051267172 hasConcept C137800194 @default.
- W2051267172 hasConcept C154945302 @default.
- W2051267172 hasConcept C155032097 @default.
- W2051267172 hasConcept C179717631 @default.
- W2051267172 hasConcept C202286095 @default.
- W2051267172 hasConcept C2775924081 @default.
- W2051267172 hasConcept C2778449969 @default.
- W2051267172 hasConcept C38365724 @default.
- W2051267172 hasConcept C41008148 @default.
- W2051267172 hasConcept C47446073 @default.
- W2051267172 hasConcept C50644808 @default.
- W2051267172 hasConcept C60908668 @default.
- W2051267172 hasConcept C78519656 @default.
- W2051267172 hasConcept C81388566 @default.
- W2051267172 hasConcept C99498987 @default.
- W2051267172 hasConceptScore W2051267172C104114177 @default.
- W2051267172 hasConceptScore W2051267172C11413529 @default.
- W2051267172 hasConceptScore W2051267172C115961682 @default.
- W2051267172 hasConceptScore W2051267172C127413603 @default.
- W2051267172 hasConceptScore W2051267172C137800194 @default.
- W2051267172 hasConceptScore W2051267172C154945302 @default.
- W2051267172 hasConceptScore W2051267172C155032097 @default.
- W2051267172 hasConceptScore W2051267172C179717631 @default.
- W2051267172 hasConceptScore W2051267172C202286095 @default.
- W2051267172 hasConceptScore W2051267172C2775924081 @default.
- W2051267172 hasConceptScore W2051267172C2778449969 @default.
- W2051267172 hasConceptScore W2051267172C38365724 @default.
- W2051267172 hasConceptScore W2051267172C41008148 @default.
- W2051267172 hasConceptScore W2051267172C47446073 @default.
- W2051267172 hasConceptScore W2051267172C50644808 @default.
- W2051267172 hasConceptScore W2051267172C60908668 @default.
- W2051267172 hasConceptScore W2051267172C78519656 @default.
- W2051267172 hasConceptScore W2051267172C81388566 @default.
- W2051267172 hasConceptScore W2051267172C99498987 @default.
- W2051267172 hasLocation W20512671721 @default.
- W2051267172 hasOpenAccess W2051267172 @default.
- W2051267172 hasPrimaryLocation W20512671721 @default.
- W2051267172 hasRelatedWork W1990196040 @default.
- W2051267172 hasRelatedWork W1994108552 @default.
- W2051267172 hasRelatedWork W20228313 @default.
- W2051267172 hasRelatedWork W2032813601 @default.
- W2051267172 hasRelatedWork W2050162637 @default.
- W2051267172 hasRelatedWork W2073162239 @default.
- W2051267172 hasRelatedWork W2074719611 @default.
- W2051267172 hasRelatedWork W2081374524 @default.
- W2051267172 hasRelatedWork W2081910282 @default.
- W2051267172 hasRelatedWork W2154024805 @default.
- W2051267172 hasRelatedWork W2157064697 @default.
- W2051267172 hasRelatedWork W2213647404 @default.
- W2051267172 hasRelatedWork W2322070804 @default.
- W2051267172 hasRelatedWork W2331082202 @default.
- W2051267172 hasRelatedWork W2980424822 @default.
- W2051267172 hasRelatedWork W2986635620 @default.
- W2051267172 hasRelatedWork W3118306418 @default.
- W2051267172 hasRelatedWork W2101668365 @default.
- W2051267172 hasRelatedWork W2255889009 @default.
- W2051267172 hasRelatedWork W2957421267 @default.
- W2051267172 isParatext "false" @default.
- W2051267172 isRetracted "false" @default.