Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051269121> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2051269121 endingPage "1565" @default.
- W2051269121 startingPage "1560" @default.
- W2051269121 abstract "No AccessJournal of UrologyInvestigative Urology1 Oct 1995Gene Expression After Uninephrectomy in Rat: Simultaneous Expression of Positive and Negative Growth Control Elements David W. Moskowitz and Wei Liu David W. MoskowitzDavid W. Moskowitz More articles by this author and Wei LiuWei Liu More articles by this author View All Author Informationhttps://doi.org/10.1016/S0022-5347(01)66929-5AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: Compensatory renal growth after contralateral nephrectomy consists largely of hypertrophy of the renal cortex. The signals initiating compensatory renal growth are as yet unknown. Materials and Methods: Using a technique of quantitative dot-blot hybridization, we examined the expression of a number of genes after contralateral nephrectomy in the rat in an effort to establish a characteristic “fingerprint” which might shed light on the mechanism of compensatory renal growth. Results: Negative growth control elements, including transcriptional repressors (WT-1, junB, myn, HNF-1, p53, RB, Dr1, gas2, gadd153) were induced 1.7 to 4.7-fold within 1 hour after uninephrectomy, as were positive growth control elements (egr-1, c-jun, cyclin C, cyclin E; 1.9-to 4.2-fold induction). The steady state mRNA levels for heat shock genes hsp70, hsp86 and hsp90 beta, as well as extracellular matrix genes fibronectin and collagen I (alpha1 chain) were also increased 1 hour after uninephrectomy. In addition, 2 Na sup + -specific exchangers (NHE-1 and Na/Ca) were induced within 1 hour after uninephrectomy. Conclusions: These results suggest the coordinate expression of positive and negative growth control elements early in this physiologic model of organ growth. References 1 : The biology of renal hypertrophy.. Kidney Int.1986; 29: 619. Google Scholar 2 : Long-term follow-up after partial removal of a solitary kidney.. N. Engl. J. Med.1991; 325: 1058. Google Scholar 3 : Compensatory Renal Hypertrophy. New York: Academic Press1969: 1. Google Scholar 4 : Liver regeneration: molecular mechanisms of growth control.. F.A.S.E.B. J.1990; 4: 176. Google Scholar 5 : G sub 1 events and regulation of cell proliferation.. Science1989; 246: 603. Google Scholar 6 : Regulation of renal ion transport and cell growth by sodium. Am. J. Physiol.1989; 257: F1. Google Scholar 7 : Renal metabolism. In: Diseases of the Kidney. 4th ed.. Edited by . Boston: Little Brown1988: 241. Google Scholar 8 : Phospholipid metabolism in the initiation of renal compensatory growth after acute reduction of renal mass. J. Clin. Invest.1974; 54: 91. Google Scholar 9 : Ca sup 2+ uptake by endoplasmic reticulum of renal cortex.. II. Effects of uninephrectomy and parathyroidectomy. Calcif. Tissue Int.1992; 51: 42. Google Scholar 10 : Ca sup 2+ uptake by endoplasmic reticulum of renal cortex.. I. Ionic requirements and regulation in vitro. Calcif. Tissue Int.1992; 51: 35. Google Scholar 11 : Expression of two “immediate early” genes, Egr-1 and c-fos, in response to renal ischemia and during compensatory renal hypertrophy in mice.. J. Clin. Invest.1990; 85: 766. Google Scholar 12 : Compensatory growth of the kidney.. N. Engl. J. Med.1969; 280: 1446. Google Scholar 13 : Transcriptional repression mediated by the WT1 Wilms' tumor gene product. Science1991; 253: 1550. Google Scholar 14 : Wild-type p53 binds to the TATA-binding protein and represses transcription.. Proc. Natl. Acad. Sci. U.S.A.1992; 89: 12028. Google Scholar 15 : Regions of the retinoblastoma gene product required for its interaction with the E2F transcription factor are necessary for E2 promoter repression and pRb-mediated growth suppression.. Mol. Cell. Biol.1993; 13: 3384. Google Scholar 16 : Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription.. Cell1992; 70: 477. Google Scholar 17 : JunB differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers.. Genes Dev.1993; 7: 479. Google Scholar 18 : Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and Ras contransformation.. Cell1991; 65: 395. Google Scholar 19 : Sequence-specific transcriptional activation by Myc and repression by Max.. Mol. Cell. Biol.1993; 13: 383. Google Scholar 20 : Expression and chromosomal localization of the gene for the human transcriptional repressor GCF.. J. Biol. Chem.1992; 267: 1689. Google Scholar 21 : Genes specifically expressed at growth arrest of mammalian cells.. Cell1988; 54: 787. Google Scholar 22 : Isolation and characterization of the hamster gadd153 gene.. J. Biol. Chem.1990; 265: 16521. Google Scholar 23 : A lamininlike adhesive protein concentrated in the synaptic cleft of the neuromuscular junction.. Nature1989; 338: 229. Google Scholar 24 : Structure of the 5'-flanking regulatory region and gene for the human growth factor-activatable Na/H exchanger NHE-1.. J. Biol. Chem.1991; 266: 10813. Google Scholar 25 : Expression of the Na-Ca exchanger in diverse tissues: a study using the cloned human cardiac Na-Ca exchanger. Am. J. Physiol.1992; 263: C1241. Google Scholar 26 : Sequence and regulation of a gene encoding a human 89-kilodalton heat shock protein.. Mol. Cell. Biol.1989; 9: 2615. Google Scholar 27 : Reflex responses to reductions in functioning renal mass.. Fed. Proc.1985; 44: 2840. Google Scholar 28 : Primary response gene expression in renal hypertrophy and hyperplasia: evidence for different growth initiation processes. Am. J. Physiol.1991; 260: F823. Google Scholar 29 : Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.. Anal. Biochem.1987; 162: 156. Google Scholar 30 : The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes.. Mol. Cell. Biol.1991; 11: 381. Google Scholar 31 : Gene expression of growth-related proteins and ECM constituents in response to unilateral nephrectomy. Am. J. Physiol.1992; 262: F389. Google Scholar 32 : Fos and jun: the AP-1 connection.. Cell1988; 55: 395. Google Scholar 33 : Association of human cyclin E with a periodic G sub 1 -S phase protein kinase.. Science1992; 257: 1958. Google Scholar 34 : The role of p34 kinases in the G sub 1 to S-phase transition.. Annu. Rev. Cell. Biol.1992; 8: 529. Google Scholar 35 : The p53 tumor suppressor gene as a common cellular target in human carcinogenesis.. Am. J. Gastroenterol.1993; 88: 174. Google Scholar 36 : Expression of a Wilms' tumor gene in porcine kidney during compensatory renal growth.. J. Urol.1992; 148: 555. Abstract, Google Scholar 37 : Calcium ionophore A23187 induces expression of the growth arrest and DNA damage inducible CCAAT/enhancer-binding protein (C/EBP)-related gene, gadd153.. J. Biol. Chem.1992; 267: 20465. Google Scholar 38 : Gas2, a growth arrest-specific protein, is a component of the microfilament network system.. J. Cell Biol.1992; 117: 1251. Google Scholar 39 : Molecular cloning, functional expression, and chromosomal localization of mouse hepatocyte nuclear factor 1.. Proc. Natl. Acad. Sci. U.S.A.1990; 87: 9838. Google Scholar 40 : The translation machinery and 70 kd heat shock protein cooperate in protein synthesis.. Cell1992; 72: 97. Google Scholar 41 : Characterization of the mouse 84-kD heat shock protein gene family.. DNA Cell Biol.1990; 9: 387. Google Scholar 42 : The functional role of the beta-subunit in the maturation and intracellular transport of Na,K-ATPase.. F.E.B.S. Lett.1991; 285: 189. Google Scholar 43 : Evidence of a role for the Na,K-ATPase beta-subunit in active cation transport.. Ann. N.Y. Acad. Sci.1992; 671: 147. Google Scholar 44 : Expression, targeting, and assembly of functional Na,K-ATPase polypeptides in baculovirus-infected insect cells.. J. Biol. Chem.1993; 268: 1470. Google Scholar 45 : Na-K-ATPase in isolated rabbit tubules after unilateral nephrectomy and Na sup + loading. Am. J. Physiol.1985; 248: F565. Google Scholar 46 : Interaction of the -170 cyclic AMP response element with the adjacent CCAAT box in the human fibronectin gene promoter.. J. Biol. Chem.1992; 267: 12767. Google Scholar Departments of Internal Medicine and Pharmacological and Physiological Science, St. Louis University Health Sciences Center and St. Louis VA Medical Center, St. Louis, Missouri.© 1995 by American Urological Association, Inc.FiguresReferencesRelatedDetails Volume 154Issue 4October 1995Page: 1560-1565 Advertisement Copyright & Permissions© 1995 by American Urological Association, Inc.MetricsAuthor Information David W. Moskowitz More articles by this author Wei Liu More articles by this author Expand All Advertisement PDF downloadLoading ..." @default.
- W2051269121 created "2016-06-24" @default.
- W2051269121 creator A5035239198 @default.
- W2051269121 creator A5071037763 @default.
- W2051269121 date "1995-10-01" @default.
- W2051269121 modified "2023-10-18" @default.
- W2051269121 title "Gene Expression After Uninephrectomy in Rat: Simultaneous Expression of Positive and Negative Growth Control Elements" @default.
- W2051269121 cites W1482803833 @default.
- W2051269121 cites W1489669524 @default.
- W2051269121 cites W1494951884 @default.
- W2051269121 cites W1501290049 @default.
- W2051269121 cites W1501820245 @default.
- W2051269121 cites W1569610549 @default.
- W2051269121 cites W1821289342 @default.
- W2051269121 cites W1971701348 @default.
- W2051269121 cites W1973175271 @default.
- W2051269121 cites W1974391793 @default.
- W2051269121 cites W1979669293 @default.
- W2051269121 cites W1988844565 @default.
- W2051269121 cites W1991553946 @default.
- W2051269121 cites W2009617568 @default.
- W2051269121 cites W2009837683 @default.
- W2051269121 cites W2014569682 @default.
- W2051269121 cites W2032480846 @default.
- W2051269121 cites W2048515321 @default.
- W2051269121 cites W2049114614 @default.
- W2051269121 cites W2050197131 @default.
- W2051269121 cites W2052977964 @default.
- W2051269121 cites W2072954278 @default.
- W2051269121 cites W2074382823 @default.
- W2051269121 cites W2076059928 @default.
- W2051269121 cites W2080132636 @default.
- W2051269121 cites W2085566447 @default.
- W2051269121 cites W2087586960 @default.
- W2051269121 cites W2133084943 @default.
- W2051269121 cites W2160773412 @default.
- W2051269121 cites W2198974858 @default.
- W2051269121 cites W2314658319 @default.
- W2051269121 cites W2342502794 @default.
- W2051269121 cites W2414977084 @default.
- W2051269121 cites W4233188803 @default.
- W2051269121 cites W4236735908 @default.
- W2051269121 cites W4294216491 @default.
- W2051269121 doi "https://doi.org/10.1016/s0022-5347(01)66929-5" @default.
- W2051269121 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7658591" @default.
- W2051269121 hasPublicationYear "1995" @default.
- W2051269121 type Work @default.
- W2051269121 sameAs 2051269121 @default.
- W2051269121 citedByCount "15" @default.
- W2051269121 countsByYear W20512691212017 @default.
- W2051269121 countsByYear W20512691212020 @default.
- W2051269121 countsByYear W20512691212021 @default.
- W2051269121 crossrefType "journal-article" @default.
- W2051269121 hasAuthorship W2051269121A5035239198 @default.
- W2051269121 hasAuthorship W2051269121A5071037763 @default.
- W2051269121 hasConcept C104317684 @default.
- W2051269121 hasConcept C150194340 @default.
- W2051269121 hasConcept C199360897 @default.
- W2051269121 hasConcept C3018223157 @default.
- W2051269121 hasConcept C3019361144 @default.
- W2051269121 hasConcept C41008148 @default.
- W2051269121 hasConcept C54355233 @default.
- W2051269121 hasConcept C556039675 @default.
- W2051269121 hasConcept C71924100 @default.
- W2051269121 hasConcept C86803240 @default.
- W2051269121 hasConcept C90559484 @default.
- W2051269121 hasConceptScore W2051269121C104317684 @default.
- W2051269121 hasConceptScore W2051269121C150194340 @default.
- W2051269121 hasConceptScore W2051269121C199360897 @default.
- W2051269121 hasConceptScore W2051269121C3018223157 @default.
- W2051269121 hasConceptScore W2051269121C3019361144 @default.
- W2051269121 hasConceptScore W2051269121C41008148 @default.
- W2051269121 hasConceptScore W2051269121C54355233 @default.
- W2051269121 hasConceptScore W2051269121C556039675 @default.
- W2051269121 hasConceptScore W2051269121C71924100 @default.
- W2051269121 hasConceptScore W2051269121C86803240 @default.
- W2051269121 hasConceptScore W2051269121C90559484 @default.
- W2051269121 hasIssue "4" @default.
- W2051269121 hasLocation W20512691211 @default.
- W2051269121 hasLocation W20512691212 @default.
- W2051269121 hasOpenAccess W2051269121 @default.
- W2051269121 hasPrimaryLocation W20512691211 @default.
- W2051269121 hasRelatedWork W138964897 @default.
- W2051269121 hasRelatedWork W2029633625 @default.
- W2051269121 hasRelatedWork W2030608039 @default.
- W2051269121 hasRelatedWork W2034625591 @default.
- W2051269121 hasRelatedWork W2051269121 @default.
- W2051269121 hasRelatedWork W2070922469 @default.
- W2051269121 hasRelatedWork W2074557265 @default.
- W2051269121 hasRelatedWork W2116925118 @default.
- W2051269121 hasRelatedWork W2156830367 @default.
- W2051269121 hasRelatedWork W2166770312 @default.
- W2051269121 hasVolume "154" @default.
- W2051269121 isParatext "false" @default.
- W2051269121 isRetracted "false" @default.
- W2051269121 magId "2051269121" @default.
- W2051269121 workType "article" @default.