Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051277494> ?p ?o ?g. }
- W2051277494 endingPage "1310" @default.
- W2051277494 startingPage "1303" @default.
- W2051277494 abstract "Fourier transform ion cyclotron resonance mass spectrometry has the ability to realize exceptional mass measurement accuracy (MMA); MMA is one of the most significant attributes of mass spectrometric measurements as it affords extraordinary molecular specificity. However, due to space-charge effects, the achievable MMA significantly depends on the total number of ions trapped in the ICR cell for a particular measurement, as well as relative ion abundance of a given species. Artificial neural network calibration in conjunction with automatic gain control (AGC) is utilized in these experiments to formally account for the differences in total ion population in the ICR cell between the external calibration spectra and experimental spectra. In addition, artificial neural network calibration is used to account for both differences in total ion population in the ICR cell as well as relative ion abundance of a given species, which also affords mean MMA values at the parts-per-billion level." @default.
- W2051277494 created "2016-06-24" @default.
- W2051277494 creator A5011472766 @default.
- W2051277494 creator A5065855620 @default.
- W2051277494 creator A5067430230 @default.
- W2051277494 creator A5078184332 @default.
- W2051277494 date "2009-07-01" @default.
- W2051277494 modified "2023-10-03" @default.
- W2051277494 title "Utilizing artificial neural networks in matlab to achieve parts-per-billion mass measurement accuracy with a fourier transform ion cyclotron resonance mass spectrometer" @default.
- W2051277494 cites W1567083950 @default.
- W2051277494 cites W1973429805 @default.
- W2051277494 cites W1976645829 @default.
- W2051277494 cites W1977083480 @default.
- W2051277494 cites W1977417082 @default.
- W2051277494 cites W1981523738 @default.
- W2051277494 cites W1982441092 @default.
- W2051277494 cites W1985115222 @default.
- W2051277494 cites W1992301222 @default.
- W2051277494 cites W1996361563 @default.
- W2051277494 cites W2004858523 @default.
- W2051277494 cites W2010997024 @default.
- W2051277494 cites W2013315672 @default.
- W2051277494 cites W2015900201 @default.
- W2051277494 cites W2019990493 @default.
- W2051277494 cites W2020546370 @default.
- W2051277494 cites W2028263920 @default.
- W2051277494 cites W2028501442 @default.
- W2051277494 cites W2036078936 @default.
- W2051277494 cites W2037927023 @default.
- W2051277494 cites W2040947654 @default.
- W2051277494 cites W2049397821 @default.
- W2051277494 cites W2066943304 @default.
- W2051277494 cites W2068870284 @default.
- W2051277494 cites W2069449607 @default.
- W2051277494 cites W2079615115 @default.
- W2051277494 cites W2080729556 @default.
- W2051277494 cites W2088564973 @default.
- W2051277494 cites W2092099667 @default.
- W2051277494 cites W2094171036 @default.
- W2051277494 cites W2095358024 @default.
- W2051277494 cites W2110812878 @default.
- W2051277494 cites W2119423166 @default.
- W2051277494 cites W2122328962 @default.
- W2051277494 cites W2133923164 @default.
- W2051277494 cites W2139701594 @default.
- W2051277494 cites W2155482699 @default.
- W2051277494 cites W2161175048 @default.
- W2051277494 cites W2168745915 @default.
- W2051277494 cites W4239953570 @default.
- W2051277494 doi "https://doi.org/10.1016/j.jasms.2009.02.030" @default.
- W2051277494 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2752871" @default.
- W2051277494 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19362012" @default.
- W2051277494 hasPublicationYear "2009" @default.
- W2051277494 type Work @default.
- W2051277494 sameAs 2051277494 @default.
- W2051277494 citedByCount "14" @default.
- W2051277494 countsByYear W20512774942013 @default.
- W2051277494 countsByYear W20512774942014 @default.
- W2051277494 countsByYear W20512774942015 @default.
- W2051277494 countsByYear W20512774942017 @default.
- W2051277494 countsByYear W20512774942019 @default.
- W2051277494 countsByYear W20512774942021 @default.
- W2051277494 crossrefType "journal-article" @default.
- W2051277494 hasAuthorship W2051277494A5011472766 @default.
- W2051277494 hasAuthorship W2051277494A5065855620 @default.
- W2051277494 hasAuthorship W2051277494A5067430230 @default.
- W2051277494 hasAuthorship W2051277494A5078184332 @default.
- W2051277494 hasBestOaLocation W20512774942 @default.
- W2051277494 hasConcept C102519508 @default.
- W2051277494 hasConcept C105795698 @default.
- W2051277494 hasConcept C113196181 @default.
- W2051277494 hasConcept C121332964 @default.
- W2051277494 hasConcept C144024400 @default.
- W2051277494 hasConcept C145148216 @default.
- W2051277494 hasConcept C149923435 @default.
- W2051277494 hasConcept C162356407 @default.
- W2051277494 hasConcept C165838908 @default.
- W2051277494 hasConcept C170552419 @default.
- W2051277494 hasConcept C178790620 @default.
- W2051277494 hasConcept C179302884 @default.
- W2051277494 hasConcept C185592680 @default.
- W2051277494 hasConcept C193055867 @default.
- W2051277494 hasConcept C205345274 @default.
- W2051277494 hasConcept C2908647359 @default.
- W2051277494 hasConcept C33923547 @default.
- W2051277494 hasConcept C39527238 @default.
- W2051277494 hasConcept C40325409 @default.
- W2051277494 hasConcept C43617362 @default.
- W2051277494 hasConcept C46141821 @default.
- W2051277494 hasConcept C62520636 @default.
- W2051277494 hasConceptScore W2051277494C102519508 @default.
- W2051277494 hasConceptScore W2051277494C105795698 @default.
- W2051277494 hasConceptScore W2051277494C113196181 @default.
- W2051277494 hasConceptScore W2051277494C121332964 @default.
- W2051277494 hasConceptScore W2051277494C144024400 @default.
- W2051277494 hasConceptScore W2051277494C145148216 @default.
- W2051277494 hasConceptScore W2051277494C149923435 @default.
- W2051277494 hasConceptScore W2051277494C162356407 @default.