Matches in SemOpenAlex for { <https://semopenalex.org/work/W20513060> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W20513060 abstract "Over the last few decades, advances in life sciences have generated a vast amount of biological data. To cope with the rapid increase in data volume, there is a pressing need for efficient computational methods to query large biological datasets. This thesis develops efficient and scalable querying methods for biological data. For an efficient sequence database search, we developed two q-gram index based algorithms, miBLAST and ProbeMatch. miBLAST is designed to expedite batch identification of statistically significant sequence alignments. ProbeMatch is designed for identifying sequence alignments based on a k-mismatch model. For an efficient protein structure database search, we also developed a multi-dimensional index based algorithm method called proCC, an automatic and efficient classification framework. All these algorithms result in substantial performance improvements over existing methods. When designing index-based methods, the right choice of indexing methods is essential. In addition to developing index-based methods for biological applications, we also investigated an essential database problem that reexamines the state-of-the-art indexing methods by experimental evaluation. Our experimental study provides a valuable insight for choosing the right indexing method and also motivates a careful consideration of index structures when designing index-based methods. In the long run, index-based methods can lead to new and more efficient algorithms for querying and mining biological datasets. The examples above, which include query processing on biological sequence and geometrical structure datasets, employ index-based methods very effectively. While the database research community has long recognized the need for index-based query processing algorithms, the bioinformatics community has been slow to adopt such algorithms. However, since many biological datasets are growing very rapidly, database-style index-based algorithms are likely to play a crucial role in modern bioinformatics methods. The work proposed in this thesis lays the foundation for such methods." @default.
- W20513060 created "2016-06-24" @default.
- W20513060 creator A5062938103 @default.
- W20513060 creator A5069237428 @default.
- W20513060 date "2008-01-01" @default.
- W20513060 modified "2023-09-24" @default.
- W20513060 title "Efficient index-based methods for processing large biological databases" @default.
- W20513060 hasPublicationYear "2008" @default.
- W20513060 type Work @default.
- W20513060 sameAs 20513060 @default.
- W20513060 citedByCount "0" @default.
- W20513060 crossrefType "dissertation" @default.
- W20513060 hasAuthorship W20513060A5062938103 @default.
- W20513060 hasAuthorship W20513060A5069237428 @default.
- W20513060 hasConcept C116834253 @default.
- W20513060 hasConcept C124101348 @default.
- W20513060 hasConcept C136764020 @default.
- W20513060 hasConcept C201797286 @default.
- W20513060 hasConcept C20901353 @default.
- W20513060 hasConcept C23123220 @default.
- W20513060 hasConcept C2777382242 @default.
- W20513060 hasConcept C2778112365 @default.
- W20513060 hasConcept C41008148 @default.
- W20513060 hasConcept C48044578 @default.
- W20513060 hasConcept C54355233 @default.
- W20513060 hasConcept C59276292 @default.
- W20513060 hasConcept C59822182 @default.
- W20513060 hasConcept C60644358 @default.
- W20513060 hasConcept C75165309 @default.
- W20513060 hasConcept C77088390 @default.
- W20513060 hasConcept C86803240 @default.
- W20513060 hasConceptScore W20513060C116834253 @default.
- W20513060 hasConceptScore W20513060C124101348 @default.
- W20513060 hasConceptScore W20513060C136764020 @default.
- W20513060 hasConceptScore W20513060C201797286 @default.
- W20513060 hasConceptScore W20513060C20901353 @default.
- W20513060 hasConceptScore W20513060C23123220 @default.
- W20513060 hasConceptScore W20513060C2777382242 @default.
- W20513060 hasConceptScore W20513060C2778112365 @default.
- W20513060 hasConceptScore W20513060C41008148 @default.
- W20513060 hasConceptScore W20513060C48044578 @default.
- W20513060 hasConceptScore W20513060C54355233 @default.
- W20513060 hasConceptScore W20513060C59276292 @default.
- W20513060 hasConceptScore W20513060C59822182 @default.
- W20513060 hasConceptScore W20513060C60644358 @default.
- W20513060 hasConceptScore W20513060C75165309 @default.
- W20513060 hasConceptScore W20513060C77088390 @default.
- W20513060 hasConceptScore W20513060C86803240 @default.
- W20513060 hasLocation W205130601 @default.
- W20513060 hasOpenAccess W20513060 @default.
- W20513060 hasPrimaryLocation W205130601 @default.
- W20513060 hasRelatedWork W1495251128 @default.
- W20513060 hasRelatedWork W1567829956 @default.
- W20513060 hasRelatedWork W1607660711 @default.
- W20513060 hasRelatedWork W1967561296 @default.
- W20513060 hasRelatedWork W1968773464 @default.
- W20513060 hasRelatedWork W1988432940 @default.
- W20513060 hasRelatedWork W1998203684 @default.
- W20513060 hasRelatedWork W2002363204 @default.
- W20513060 hasRelatedWork W2053693780 @default.
- W20513060 hasRelatedWork W2063328136 @default.
- W20513060 hasRelatedWork W2102579526 @default.
- W20513060 hasRelatedWork W2112042392 @default.
- W20513060 hasRelatedWork W2125745905 @default.
- W20513060 hasRelatedWork W2165879419 @default.
- W20513060 hasRelatedWork W2168104796 @default.
- W20513060 hasRelatedWork W2768115058 @default.
- W20513060 hasRelatedWork W2984636935 @default.
- W20513060 hasRelatedWork W3015072142 @default.
- W20513060 hasRelatedWork W3122552376 @default.
- W20513060 hasRelatedWork W3134755123 @default.
- W20513060 isParatext "false" @default.
- W20513060 isRetracted "false" @default.
- W20513060 magId "20513060" @default.
- W20513060 workType "dissertation" @default.