Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051553722> ?p ?o ?g. }
- W2051553722 endingPage "433" @default.
- W2051553722 startingPage "425" @default.
- W2051553722 abstract "Surfactant assemblies have a wide range of applications in areas such as the chemical industry, material science, biology, and enhanced oil recovery. From both theoretical and practical perspectives, researchers have focused on tuning the aggregation behaviors of surfactants. Researchers commonly use solid and liquid compounds such as cosurfactants, acids, salts, and alcohols as stimuli for tuning the aggregation behaviors. However, these additives can present economic and environmental costs and can contaminate or modify the product. Therefore researchers would like to develop effective methods for tuning surfactant aggregation with easily removable, economical, and environmentally benign stimuli.Supercritical or compressed CO2 is abundant, nontoxic, and nonflammable and can be recycled easily after use. Compressed CO2 is quite soluble in many liquids, and the solubility depends on pressure and temperature. Therefore researchers can continuously influence the properties of liquid solvents by controlling the pressure or temperature of CO2. In this Account, we briefly review our recent studies on tuning the aggregation behaviors of surfactants in different media using supercritical or compressed CO2.Supercritical or compressed CO2 serves as a versatile regulator of a variety of properties of surfactant assemblies. Using CO2, we can switch the micellization of surfactants in water, adjust the properties of reverse micelles, enhance the stability of vesicles, and modify the switching transition between different surfactant assemblies. We can also tune the properties of emulsions, induce the formation of nanoemulsions, and construct novel microemulsions. With these CO2-responsive surfactant assemblies, we have synthesized functional materials, optimized chemical reaction conditions, and enhanced extraction and separation efficiencies.Compared with the conventional solid or liquid additives, CO2 shows some obvious advantages as an agent for modifying surfactant aggregation. We can adjust the aggregation behaviors continuously by pressure and can easily remove CO2 without contaminating the product, and the method is environmentally benign. We can explain the mechanisms for these effects on surfactant aggregation in terms of molecular interactions. These studies expand the areas of colloid and interface science, supercritical fluid science and technology, and chemical thermodynamics. We hope that the work will influence other fundamental and applied research in these areas." @default.
- W2051553722 created "2016-06-24" @default.
- W2051553722 creator A5000490511 @default.
- W2051553722 creator A5088758006 @default.
- W2051553722 date "2012-10-29" @default.
- W2051553722 modified "2023-09-23" @default.
- W2051553722 title "Supercritical or Compressed CO<sub>2</sub> as a Stimulus for Tuning Surfactant Aggregations" @default.
- W2051553722 cites W1972557235 @default.
- W2051553722 cites W1973792435 @default.
- W2051553722 cites W1979187547 @default.
- W2051553722 cites W1983026340 @default.
- W2051553722 cites W1986304128 @default.
- W2051553722 cites W1988751479 @default.
- W2051553722 cites W1990178568 @default.
- W2051553722 cites W1995310979 @default.
- W2051553722 cites W1998650991 @default.
- W2051553722 cites W2007502078 @default.
- W2051553722 cites W2018777619 @default.
- W2051553722 cites W2020998091 @default.
- W2051553722 cites W2022152105 @default.
- W2051553722 cites W2036865850 @default.
- W2051553722 cites W2039326248 @default.
- W2051553722 cites W2040562171 @default.
- W2051553722 cites W2044411772 @default.
- W2051553722 cites W204647853 @default.
- W2051553722 cites W2052959786 @default.
- W2051553722 cites W2056157932 @default.
- W2051553722 cites W2060365407 @default.
- W2051553722 cites W2067043569 @default.
- W2051553722 cites W2067910495 @default.
- W2051553722 cites W2073656715 @default.
- W2051553722 cites W2082522173 @default.
- W2051553722 cites W2084391327 @default.
- W2051553722 cites W2084843045 @default.
- W2051553722 cites W2087275527 @default.
- W2051553722 cites W2092565027 @default.
- W2051553722 cites W2093729249 @default.
- W2051553722 cites W2094370412 @default.
- W2051553722 cites W2102696002 @default.
- W2051553722 cites W2106187195 @default.
- W2051553722 cites W2108598887 @default.
- W2051553722 cites W2109619025 @default.
- W2051553722 cites W2116138765 @default.
- W2051553722 cites W2117353169 @default.
- W2051553722 cites W2118973814 @default.
- W2051553722 cites W2138896238 @default.
- W2051553722 cites W2156324674 @default.
- W2051553722 cites W2162233534 @default.
- W2051553722 cites W2166444800 @default.
- W2051553722 cites W2171313265 @default.
- W2051553722 cites W2487005688 @default.
- W2051553722 cites W2495587738 @default.
- W2051553722 cites W2503348119 @default.
- W2051553722 cites W4231379455 @default.
- W2051553722 cites W4255476841 @default.
- W2051553722 doi "https://doi.org/10.1021/ar300194j" @default.
- W2051553722 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23106121" @default.
- W2051553722 hasPublicationYear "2012" @default.
- W2051553722 type Work @default.
- W2051553722 sameAs 2051553722 @default.
- W2051553722 citedByCount "76" @default.
- W2051553722 countsByYear W20515537222013 @default.
- W2051553722 countsByYear W20515537222014 @default.
- W2051553722 countsByYear W20515537222015 @default.
- W2051553722 countsByYear W20515537222016 @default.
- W2051553722 countsByYear W20515537222017 @default.
- W2051553722 countsByYear W20515537222018 @default.
- W2051553722 countsByYear W20515537222019 @default.
- W2051553722 countsByYear W20515537222020 @default.
- W2051553722 countsByYear W20515537222021 @default.
- W2051553722 countsByYear W20515537222022 @default.
- W2051553722 countsByYear W20515537222023 @default.
- W2051553722 crossrefType "journal-article" @default.
- W2051553722 hasAuthorship W2051553722A5000490511 @default.
- W2051553722 hasAuthorship W2051553722A5088758006 @default.
- W2051553722 hasConcept C11268172 @default.
- W2051553722 hasConcept C118419359 @default.
- W2051553722 hasConcept C127413603 @default.
- W2051553722 hasConcept C134458231 @default.
- W2051553722 hasConcept C155574463 @default.
- W2051553722 hasConcept C171250308 @default.
- W2051553722 hasConcept C178790620 @default.
- W2051553722 hasConcept C184651966 @default.
- W2051553722 hasConcept C185592680 @default.
- W2051553722 hasConcept C190119865 @default.
- W2051553722 hasConcept C192562407 @default.
- W2051553722 hasConcept C42360764 @default.
- W2051553722 hasConcept C58226133 @default.
- W2051553722 hasConceptScore W2051553722C11268172 @default.
- W2051553722 hasConceptScore W2051553722C118419359 @default.
- W2051553722 hasConceptScore W2051553722C127413603 @default.
- W2051553722 hasConceptScore W2051553722C134458231 @default.
- W2051553722 hasConceptScore W2051553722C155574463 @default.
- W2051553722 hasConceptScore W2051553722C171250308 @default.
- W2051553722 hasConceptScore W2051553722C178790620 @default.
- W2051553722 hasConceptScore W2051553722C184651966 @default.
- W2051553722 hasConceptScore W2051553722C185592680 @default.
- W2051553722 hasConceptScore W2051553722C190119865 @default.