Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051569367> ?p ?o ?g. }
- W2051569367 endingPage "435" @default.
- W2051569367 startingPage "423" @default.
- W2051569367 abstract "Chemical processes are nonlinear. Model based control schemes such as model predictive control are highly related to the accuracy of the process model. For a highly nonlinear chemical system, it is clear to implement a nonlinear empirical model, such as artificial neural network model, should be superior to a linear model such as dynamic matrix model. However, unlike linear systems, the accuracy of a nonlinear empirical model strongly depends on its original data or training data based on how the model is built up. A regional-knowledge index is proposed in this study and applied in the analysis of dynamic artificial neural network models in process control. New input patterns that imply extrapolations and thus unreliable prediction by an artificial neural network model can be recognized from a significant decrease in the regional-knowledge index. To tackle the extrapolation problem and assure stability of the control system, we propose to run a neural adaptive controller in parallel with a model predictive control. A coordinator weights the outputs of these two controllers to make the final control decision. The present state of the controlled process and the model fitness to the present input pattern determine the weightings of the controller's output. The proposed analysis method and the modified model predictive control architecture have been applied to a neutralization process and excellent control performance is observed in this highly nonlinear system." @default.
- W2051569367 created "2016-06-24" @default.
- W2051569367 creator A5024621447 @default.
- W2051569367 creator A5047413550 @default.
- W2051569367 creator A5052746677 @default.
- W2051569367 creator A5075764227 @default.
- W2051569367 date "2003-08-01" @default.
- W2051569367 modified "2023-10-17" @default.
- W2051569367 title "Developing a robust model predictive control architecture through regional knowledge analysis of artificial neural networks" @default.
- W2051569367 cites W1964176878 @default.
- W2051569367 cites W1964608520 @default.
- W2051569367 cites W1975243154 @default.
- W2051569367 cites W1985975372 @default.
- W2051569367 cites W1987161813 @default.
- W2051569367 cites W1989548779 @default.
- W2051569367 cites W1990242460 @default.
- W2051569367 cites W1997796399 @default.
- W2051569367 cites W2010692156 @default.
- W2051569367 cites W2016211524 @default.
- W2051569367 cites W2035895994 @default.
- W2051569367 cites W2047604197 @default.
- W2051569367 cites W2053752114 @default.
- W2051569367 cites W2057250323 @default.
- W2051569367 cites W2060872774 @default.
- W2051569367 cites W2063728229 @default.
- W2051569367 cites W2072813327 @default.
- W2051569367 cites W2073787051 @default.
- W2051569367 cites W2078726283 @default.
- W2051569367 cites W2090580536 @default.
- W2051569367 cites W2093065202 @default.
- W2051569367 cites W2103496339 @default.
- W2051569367 cites W2132267451 @default.
- W2051569367 cites W2134732652 @default.
- W2051569367 cites W2135227058 @default.
- W2051569367 cites W2147844094 @default.
- W2051569367 cites W2149723649 @default.
- W2051569367 doi "https://doi.org/10.1016/s0959-1524(02)00067-7" @default.
- W2051569367 hasPublicationYear "2003" @default.
- W2051569367 type Work @default.
- W2051569367 sameAs 2051569367 @default.
- W2051569367 citedByCount "31" @default.
- W2051569367 countsByYear W20515693672012 @default.
- W2051569367 countsByYear W20515693672014 @default.
- W2051569367 countsByYear W20515693672017 @default.
- W2051569367 countsByYear W20515693672018 @default.
- W2051569367 countsByYear W20515693672019 @default.
- W2051569367 countsByYear W20515693672020 @default.
- W2051569367 countsByYear W20515693672022 @default.
- W2051569367 crossrefType "journal-article" @default.
- W2051569367 hasAuthorship W2051569367A5024621447 @default.
- W2051569367 hasAuthorship W2051569367A5047413550 @default.
- W2051569367 hasAuthorship W2051569367A5052746677 @default.
- W2051569367 hasAuthorship W2051569367A5075764227 @default.
- W2051569367 hasConcept C111919701 @default.
- W2051569367 hasConcept C119857082 @default.
- W2051569367 hasConcept C121332964 @default.
- W2051569367 hasConcept C127413603 @default.
- W2051569367 hasConcept C132459708 @default.
- W2051569367 hasConcept C133731056 @default.
- W2051569367 hasConcept C134306372 @default.
- W2051569367 hasConcept C154945302 @default.
- W2051569367 hasConcept C155386361 @default.
- W2051569367 hasConcept C158622935 @default.
- W2051569367 hasConcept C163175372 @default.
- W2051569367 hasConcept C172205157 @default.
- W2051569367 hasConcept C203479927 @default.
- W2051569367 hasConcept C2775924081 @default.
- W2051569367 hasConcept C33923547 @default.
- W2051569367 hasConcept C41008148 @default.
- W2051569367 hasConcept C47446073 @default.
- W2051569367 hasConcept C50644808 @default.
- W2051569367 hasConcept C62520636 @default.
- W2051569367 hasConcept C6557445 @default.
- W2051569367 hasConcept C86803240 @default.
- W2051569367 hasConcept C98045186 @default.
- W2051569367 hasConceptScore W2051569367C111919701 @default.
- W2051569367 hasConceptScore W2051569367C119857082 @default.
- W2051569367 hasConceptScore W2051569367C121332964 @default.
- W2051569367 hasConceptScore W2051569367C127413603 @default.
- W2051569367 hasConceptScore W2051569367C132459708 @default.
- W2051569367 hasConceptScore W2051569367C133731056 @default.
- W2051569367 hasConceptScore W2051569367C134306372 @default.
- W2051569367 hasConceptScore W2051569367C154945302 @default.
- W2051569367 hasConceptScore W2051569367C155386361 @default.
- W2051569367 hasConceptScore W2051569367C158622935 @default.
- W2051569367 hasConceptScore W2051569367C163175372 @default.
- W2051569367 hasConceptScore W2051569367C172205157 @default.
- W2051569367 hasConceptScore W2051569367C203479927 @default.
- W2051569367 hasConceptScore W2051569367C2775924081 @default.
- W2051569367 hasConceptScore W2051569367C33923547 @default.
- W2051569367 hasConceptScore W2051569367C41008148 @default.
- W2051569367 hasConceptScore W2051569367C47446073 @default.
- W2051569367 hasConceptScore W2051569367C50644808 @default.
- W2051569367 hasConceptScore W2051569367C62520636 @default.
- W2051569367 hasConceptScore W2051569367C6557445 @default.
- W2051569367 hasConceptScore W2051569367C86803240 @default.
- W2051569367 hasConceptScore W2051569367C98045186 @default.
- W2051569367 hasIssue "5" @default.