Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051573103> ?p ?o ?g. }
- W2051573103 endingPage "624" @default.
- W2051573103 startingPage "618" @default.
- W2051573103 abstract "Abstract Electricity price forecasting is an essential task for market participants in deregulated electricity market. This paper proposes an approach for next‐day peak electricity price forecasting, since it is important for risk management and bidding strategy. In the proposed method, neural network (NN) is employed as the forecasting method, and its learning data is selected by using rough sets. Moreover, the creating method of learning data based on temperature fluctuation is also proposed for generation of new learning data in order to efficiently learn. This method is examined by using the data of Pennsylvania‐New Jersey‐Maryland (PJM) electricity market and The independent electricity system operator (IESO) market. From the simulation results, it is observed that the proposed method is useful for next‐day peak electricity price forecasting. Copyright © 2009 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc." @default.
- W2051573103 created "2016-06-24" @default.
- W2051573103 creator A5001206896 @default.
- W2051573103 creator A5002869839 @default.
- W2051573103 creator A5020249277 @default.
- W2051573103 creator A5031089304 @default.
- W2051573103 creator A5064481307 @default.
- W2051573103 creator A5070052822 @default.
- W2051573103 creator A5079239916 @default.
- W2051573103 date "2009-08-31" @default.
- W2051573103 modified "2023-09-25" @default.
- W2051573103 title "Next-Day Peak Electricity Price Forecasting Using NN Based on Rough Sets Theory" @default.
- W2051573103 cites W1588448530 @default.
- W2051573103 cites W1987992778 @default.
- W2051573103 cites W1999174735 @default.
- W2051573103 cites W2021990760 @default.
- W2051573103 cites W2122909181 @default.
- W2051573103 cites W2126709108 @default.
- W2051573103 cites W2126831543 @default.
- W2051573103 cites W2147888657 @default.
- W2051573103 cites W2150722745 @default.
- W2051573103 cites W2154937380 @default.
- W2051573103 cites W2170831719 @default.
- W2051573103 cites W2171985965 @default.
- W2051573103 cites W2532474730 @default.
- W2051573103 doi "https://doi.org/10.1002/tee.20454" @default.
- W2051573103 hasPublicationYear "2009" @default.
- W2051573103 type Work @default.
- W2051573103 sameAs 2051573103 @default.
- W2051573103 citedByCount "3" @default.
- W2051573103 countsByYear W20515731032018 @default.
- W2051573103 crossrefType "journal-article" @default.
- W2051573103 hasAuthorship W2051573103A5001206896 @default.
- W2051573103 hasAuthorship W2051573103A5002869839 @default.
- W2051573103 hasAuthorship W2051573103A5020249277 @default.
- W2051573103 hasAuthorship W2051573103A5031089304 @default.
- W2051573103 hasAuthorship W2051573103A5064481307 @default.
- W2051573103 hasAuthorship W2051573103A5070052822 @default.
- W2051573103 hasAuthorship W2051573103A5079239916 @default.
- W2051573103 hasConcept C10138342 @default.
- W2051573103 hasConcept C104317684 @default.
- W2051573103 hasConcept C119599485 @default.
- W2051573103 hasConcept C127413603 @default.
- W2051573103 hasConcept C146733006 @default.
- W2051573103 hasConcept C149782125 @default.
- W2051573103 hasConcept C154945302 @default.
- W2051573103 hasConcept C158448853 @default.
- W2051573103 hasConcept C162324750 @default.
- W2051573103 hasConcept C17020691 @default.
- W2051573103 hasConcept C175444787 @default.
- W2051573103 hasConcept C182306322 @default.
- W2051573103 hasConcept C185592680 @default.
- W2051573103 hasConcept C206658404 @default.
- W2051573103 hasConcept C2781104810 @default.
- W2051573103 hasConcept C2983129042 @default.
- W2051573103 hasConcept C41008148 @default.
- W2051573103 hasConcept C42475967 @default.
- W2051573103 hasConcept C50644808 @default.
- W2051573103 hasConcept C55493867 @default.
- W2051573103 hasConcept C86339819 @default.
- W2051573103 hasConcept C9233905 @default.
- W2051573103 hasConceptScore W2051573103C10138342 @default.
- W2051573103 hasConceptScore W2051573103C104317684 @default.
- W2051573103 hasConceptScore W2051573103C119599485 @default.
- W2051573103 hasConceptScore W2051573103C127413603 @default.
- W2051573103 hasConceptScore W2051573103C146733006 @default.
- W2051573103 hasConceptScore W2051573103C149782125 @default.
- W2051573103 hasConceptScore W2051573103C154945302 @default.
- W2051573103 hasConceptScore W2051573103C158448853 @default.
- W2051573103 hasConceptScore W2051573103C162324750 @default.
- W2051573103 hasConceptScore W2051573103C17020691 @default.
- W2051573103 hasConceptScore W2051573103C175444787 @default.
- W2051573103 hasConceptScore W2051573103C182306322 @default.
- W2051573103 hasConceptScore W2051573103C185592680 @default.
- W2051573103 hasConceptScore W2051573103C206658404 @default.
- W2051573103 hasConceptScore W2051573103C2781104810 @default.
- W2051573103 hasConceptScore W2051573103C2983129042 @default.
- W2051573103 hasConceptScore W2051573103C41008148 @default.
- W2051573103 hasConceptScore W2051573103C42475967 @default.
- W2051573103 hasConceptScore W2051573103C50644808 @default.
- W2051573103 hasConceptScore W2051573103C55493867 @default.
- W2051573103 hasConceptScore W2051573103C86339819 @default.
- W2051573103 hasConceptScore W2051573103C9233905 @default.
- W2051573103 hasIssue "5" @default.
- W2051573103 hasLocation W20515731031 @default.
- W2051573103 hasOpenAccess W2051573103 @default.
- W2051573103 hasPrimaryLocation W20515731031 @default.
- W2051573103 hasRelatedWork W2034312879 @default.
- W2051573103 hasRelatedWork W2051573103 @default.
- W2051573103 hasRelatedWork W2077699106 @default.
- W2051573103 hasRelatedWork W2088353375 @default.
- W2051573103 hasRelatedWork W2162537764 @default.
- W2051573103 hasRelatedWork W2347295811 @default.
- W2051573103 hasRelatedWork W2361524917 @default.
- W2051573103 hasRelatedWork W2369447767 @default.
- W2051573103 hasRelatedWork W2390042623 @default.
- W2051573103 hasRelatedWork W2883617008 @default.
- W2051573103 hasVolume "4" @default.