Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051767867> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2051767867 endingPage "786" @default.
- W2051767867 startingPage "765" @default.
- W2051767867 abstract "Annals of the New York Academy of SciencesVolume 163, Issue 2 p. 765-786 CONSEQUENCES OF ALKYLATION FOR THE BEHAVIOR OF DNA* B. Strauss, B. Strauss Department of Microbiology The University of Chicago Chicago, Ill. Recipient of a Research Career Development Award (GM-K3-823) from the National Institutes of Health.Search for more papers by this authorM. Coyle, M. Coyle Department of Microbiology The University of Chicago Chicago, Ill.Search for more papers by this authorM. Robbins, M. Robbins Department of Microbiology The University of Chicago Chicago, Ill.Search for more papers by this author B. Strauss, B. Strauss Department of Microbiology The University of Chicago Chicago, Ill. Recipient of a Research Career Development Award (GM-K3-823) from the National Institutes of Health.Search for more papers by this authorM. Coyle, M. Coyle Department of Microbiology The University of Chicago Chicago, Ill.Search for more papers by this authorM. Robbins, M. Robbins Department of Microbiology The University of Chicago Chicago, Ill.Search for more papers by this author First published: October 1969 https://doi.org/10.1111/j.1749-6632.1969.tb24895.xCitations: 17 * Supported by grants from the National Science Foundation (GB 5419) and the National Institute of Health (GM 07816). AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References 1 ADELBERG, E., M. MANDEL & G. CHEIN-CHING-CHIN. 1965. Optimal conditions for mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochem. Biophys. Res. Commun. 18: 788– 795. 2 AMANO, E. & H. SMITH. 1965. Mutations induced by ethyl methane sulfonate in maize. Mutat. Res. 2: 344– 351. 3 BODMER, W. 1966. Integration of deoxyribonuclease treated DNA in Bacillus subtilis transformation. J. Gen. Physiol. 49(2): 233– 258. 4 BOYCE, R. & J. FARLEY. 1968. Production of single-strand breaks in covalent circular λ phage DNA in superinfected lysogens by monoalkylating agents and the joining of broken DNA strands. Virology 35: 601– 609. 5 BOYCE, R. & M. TEPPER. 1968. X-ray induced single strand breaks and joining of broken strands in superinfecting λ DNA in Escherichia coli lysogenic for λ. Virology 34: 344– 351. 6 CARLSON, E. & I. OSTER. 1962. Comparative mutagenesis of the dumpy locus in Drosophila melanogaster. II. Mutational mosaicism without apparent breakage by a monofunctional alkylating agent. Genetics 47: 561– 576. 7 CERDÁ-OLMEDO, E. & P. HANAWALT. 1967. Macromolecular action of nitrosoguanidine in Escherichia coli. Biochim. Biophys. Acta 142: 450– 464. 8 CLEAVER, J. 1968. Defective repair replication of DNA in Xeroderma pigmentosum. Nature 218: 652– 656. 9 COULSON, A. & D. CHALMERS. 1964. Separation of viable lymphocytes from human blood. Lancet 1: 468– 469. 10 CRATHORN, A. & J. ROBERTS. 1966. Mechanisms of the cytotoxic action of alkylating agents in mammalian cells and evidence for the removal of alkylated groups from deoxyribonucleic acid. Nature 211: 150– 153. 11 EVANS, R. & A. NORMAN. 1968. Radiation stimulated incorporation of thymidine into the DNA of human lymphocytes. Nature 217: 455– 456. 12 GEFTER, M., A. BECKER & J. HURWITZ. 1967. The enzymatic repair of DNA. I. Formation of circular λ. DNA. Proc. Nat. Acad. Sci. USA 58: 240– 247. 13 GREEN, D. & D. KRIEG. 1961. The delayed origin of mutants induced by exposure of extracellular phage T4 to ethyl methanesulfonate. Proc. Nat. Acad. Sci. USA 47: 64– 72. 14 GREENWALT, T., M. GAJEWSKI & J. MCKENNA. 1962. A new method for preparing buffy coat-poor blood. Transfusion 2: 221– 229. 15 HOWARD-FLANDERS, P. & R. BOYCE. 1966. DNA repair and genetic recombination studies on mutants of Escherichia coli defective in these processes. Radiat. Res. (Suppl.) 6: 156– 184. 16 KOHN, K. W., C. L. SPEARS, & P. DOTY. 1966. Inter-strand crosslinking of DNA by nitrogen mustard. J. Molec. Biol. 19: 266– 288. 17 KOHN, K. & C. SPEARS. 1967. Stabilization of nitrogen mustard alkylations and interstrand crosslinks in DNA by alkali. Biochim. Biophys. Acta 145: 734– 741. 18 KRIEG, D. 1963. Ethyl methanesulfonate-induced reversion of bacteriophage T4rII mutants. Genetics 48: 561– 580. 19 LAURENCE, D. 1963. Chain breakage of deoxyribonucleic acid following treatment with low doses of sulphur mustard. Proc. Roy. Soc. Sect. A 271: 520– 530. 20 LAWLEY, P. 1968. Methylation of DNA by N-methyl-N-nitrosourethane and N-methyl-N-nitroso-N'-nitroguanidine. Nature 218: 580– 581. 21 LAWLEY, P. & P. BROOKES. 1963. Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem. J. 89: 127– 138. 22 LAWLEY, P. & P. BROOKES. 1965. Molecular mechanism of the cytotoxic action of difunctional alkylating agents and of resistance to this action. Nature 206: 480– 483. 23 LAWLEY, P. & P. BROOKES. 1967. Interstrand crosslinking of DNA by difunctional alkylating agents. J. Molec. Biol. 25: 143– 160. 24 LETT, J., I. CALDWELL, C. DEAN & P. ALEXANDER. 1967. Rejoining of X-ray induced breaks in the DNA of leukaemia cells. Nature 214: 790– 792. 25 LOVELESS, A. & J. STOCK. 1959. The influence of radiomimetic substances on deoxyribonucleic acid synthesis and function studied in Escherichia coli phage systems. I. The nature of the inactivation of T2 phage in vitro by certain alkylating agents. Proc. Roy. Soc. Sect. B 150: 423– 445. 26 MAHLER, I. 1966. Effect of Mitomycin C on five excision-repair mutants of Bacillus subtilis. Biochem. Biophys. Res. Commun. 25: 73– 79. 27 OKUBO, S., H. NAKAYAMA, M. SEKIGUCHI & Y. TAKAGI. 1967. A mutant of Micrococcus lysodeikticus defective in a deoxyribonuclease activity specific for ultraviolet-irradiated DNA. Biochem. Biophys. Res. Commun. 27: 224– 229. 28 PAINTER, R. & J. CLEAVER. 1967. Repair replication in HaLa cells after large doses of X-irradiation. Nature 217: 369– 370. 29 PAPIRMEISTER, B. & C. DAVISON. 1964. Elimination of sulfur mustard-induced products from DNA of Escherichia coli. Biochem. Biophys. Res. Commun. 17: 608– 617. 30 REITER, H. & B. STRAUSS. 1965. Repair of damage induced by a monofunctional alkylating agent in a transformable, ultraviolet-sensitive strain of Bacillus subtilis. J. Molec. Biol. 14: 179– 194. 31 REITER, H., B. STRAUSS, M. ROBBINS, & R. MARONE. 1967. Nature of the repair of methyl methanesulfonate induced damage in Bacillus subtilis. J. Bact. 93: 1056– 1062. 32 ROBBINS, J. 1964. Tissue culture studies of the human lymphocyte. Science 146: 1648– 1654. 33 ROBERTS, J., A. CRATHORN & T. BRENT. 1968. Repair of alkylated DNA in mammalian cells. Nature 218: 970– 972. 34 SCHREK, R. & S. STEFANI. 1964. Radioresistance of phytohemagglutinin-treated normal and leukemic lymphocytes. J. Nat. Cancer Inst. 32: 507– 517. 35 SEARASHI, T. & B. STRAUSS. 1965. Relation of the repair of damage induced by a monofunctional alkylating agent to the repair of damage induced by ultraviolet light in Bacillus subtilis. Biochem. Biophys. Res. Commun. 20: 680– 687. 36 SEARASHI, T. & B. STRAUSS. 1967. Glucose requirement for DNA breakdown resulting from treatment of Bacillus subtilis with ultraviolet radiation or methyl methane sulfonate. Mutat. Res. 4: 372– 375. 37 STEFANI, S. & R. SCHREK. 1964. In vitro effect of phytohemagglutinin on the sensitivity of human lymphocytes to nitrogen mustard (HN2). J. Lab. Clin. Med. 63: 1027– 1032. 38 STRAUSS, B. 1963. Recovery of deoxyribonucleic acid from the effects of alkylation. J. Gen. Microbiol. 30: 89– 103. 39 STRAUSS, B. 1968. DNA repair mechanisms and their relation to mutation and recombination. Current Topics in Microbiology and Immunology 44: 1– 85. 40 STRAUSS, B., M. COYLE & M. ROBBINS. 1968. Alkylation damage and its repair. Cold Spring Harbor Symposium of Quantitative Biology. 33: 277– 287. 41 STRAUSS, B. & M. ROBBINS. 1968. DNA methylated in vitro by a monofunctional alkylating agent as a substrate for a specific nuclease from Micrococcus lysodeikticus. Biochim. Biophys. Acta 161: 68– 75. 42 STRAUSS, B. & R. WAHL. 1964. The presence of breaks in the deoxyribonucleic acid of Bacillus subtilis treated in vivo with the alkylating agent, methyl methanesulfonate. Biochim. Biophys. Acta 80: 116– 126. 43 TERAWAKI, A. & J. GREENBERG. 1965. Effect of some radiomimetic agents on deoxyribonucleic acid synthesis in Escherichia coli and transformation in Bacillus subtilis. Biochim. Biophys. Acta 95: 170– 173. 44 WAHL-SYNEK, R. 1967. Production of single strand breaks as an inactivating effect of the chemical mutagen methyl methanesulfonate on Bacillus subtilis DNA. Ph. D. Thesis. University of Chicago, Chicago, Ill. 45 WEISS, B. & C. RICHARDSON. 1967. Enzymatic breakage and joining of deoxyribonucleic acid. I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc. Nat. Acad. Sci. USA 57: 1021– 1028. Citing Literature Volume163, Issue2Biological Effects of Alkylating AgentsOctober 1969Pages 765-786 ReferencesRelatedInformation" @default.
- W2051767867 created "2016-06-24" @default.
- W2051767867 creator A5009404480 @default.
- W2051767867 creator A5038180641 @default.
- W2051767867 creator A5076212319 @default.
- W2051767867 date "1969-10-01" @default.
- W2051767867 modified "2023-10-16" @default.
- W2051767867 title "CONSEQUENCES OF ALKYLATION FOR THE BEHAVIOR OF DNA" @default.
- W2051767867 cites W1259363667 @default.
- W2051767867 cites W1576510277 @default.
- W2051767867 cites W1619713005 @default.
- W2051767867 cites W1966892104 @default.
- W2051767867 cites W1982908731 @default.
- W2051767867 cites W1983125705 @default.
- W2051767867 cites W1985504590 @default.
- W2051767867 cites W1988093595 @default.
- W2051767867 cites W1988411290 @default.
- W2051767867 cites W1989737739 @default.
- W2051767867 cites W1990493392 @default.
- W2051767867 cites W1998247911 @default.
- W2051767867 cites W2013029210 @default.
- W2051767867 cites W2013110105 @default.
- W2051767867 cites W2025886205 @default.
- W2051767867 cites W2027822165 @default.
- W2051767867 cites W2029630053 @default.
- W2051767867 cites W2032430945 @default.
- W2051767867 cites W2039270150 @default.
- W2051767867 cites W2052880847 @default.
- W2051767867 cites W2052925636 @default.
- W2051767867 cites W2058893374 @default.
- W2051767867 cites W2067279552 @default.
- W2051767867 cites W2070091550 @default.
- W2051767867 cites W2075287879 @default.
- W2051767867 cites W2078030319 @default.
- W2051767867 cites W2079068904 @default.
- W2051767867 cites W2083597752 @default.
- W2051767867 cites W2086939344 @default.
- W2051767867 cites W2088741618 @default.
- W2051767867 cites W2119246512 @default.
- W2051767867 cites W2121824751 @default.
- W2051767867 cites W2127373274 @default.
- W2051767867 cites W2127854050 @default.
- W2051767867 cites W2157359184 @default.
- W2051767867 cites W2409913475 @default.
- W2051767867 cites W297796339 @default.
- W2051767867 cites W45498144 @default.
- W2051767867 doi "https://doi.org/10.1111/j.1749-6632.1969.tb24895.x" @default.
- W2051767867 hasPublicationYear "1969" @default.
- W2051767867 type Work @default.
- W2051767867 sameAs 2051767867 @default.
- W2051767867 citedByCount "17" @default.
- W2051767867 crossrefType "journal-article" @default.
- W2051767867 hasAuthorship W2051767867A5009404480 @default.
- W2051767867 hasAuthorship W2051767867A5038180641 @default.
- W2051767867 hasAuthorship W2051767867A5076212319 @default.
- W2051767867 hasConcept C161790260 @default.
- W2051767867 hasConcept C164361826 @default.
- W2051767867 hasConcept C185592680 @default.
- W2051767867 hasConcept C552990157 @default.
- W2051767867 hasConcept C55493867 @default.
- W2051767867 hasConcept C70721500 @default.
- W2051767867 hasConcept C86803240 @default.
- W2051767867 hasConceptScore W2051767867C161790260 @default.
- W2051767867 hasConceptScore W2051767867C164361826 @default.
- W2051767867 hasConceptScore W2051767867C185592680 @default.
- W2051767867 hasConceptScore W2051767867C552990157 @default.
- W2051767867 hasConceptScore W2051767867C55493867 @default.
- W2051767867 hasConceptScore W2051767867C70721500 @default.
- W2051767867 hasConceptScore W2051767867C86803240 @default.
- W2051767867 hasIssue "2 Biological Ef" @default.
- W2051767867 hasLocation W20517678671 @default.
- W2051767867 hasOpenAccess W2051767867 @default.
- W2051767867 hasPrimaryLocation W20517678671 @default.
- W2051767867 hasRelatedWork W2070688218 @default.
- W2051767867 hasRelatedWork W2097036420 @default.
- W2051767867 hasRelatedWork W2110618058 @default.
- W2051767867 hasRelatedWork W2131321057 @default.
- W2051767867 hasRelatedWork W2156917319 @default.
- W2051767867 hasRelatedWork W2949668585 @default.
- W2051767867 hasRelatedWork W2951550788 @default.
- W2051767867 hasRelatedWork W2952076161 @default.
- W2051767867 hasRelatedWork W2952237696 @default.
- W2051767867 hasRelatedWork W2952540179 @default.
- W2051767867 hasVolume "163" @default.
- W2051767867 isParatext "false" @default.
- W2051767867 isRetracted "false" @default.
- W2051767867 magId "2051767867" @default.
- W2051767867 workType "article" @default.