Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051808767> ?p ?o ?g. }
- W2051808767 endingPage "1168" @default.
- W2051808767 startingPage "1159" @default.
- W2051808767 abstract "An important consideration in conservation and biodiversity planning is an appreciation of the condition or integrity of ecosystems. In this study, we have applied various machine learning methods to the problem of predicting the condition or quality of the remnant indigenous vegetation across an extensive area of south-eastern Australia—the state of Victoria. The field data were obtained using the ‘habitat hectares’ approach. This rapid assessment technique produces multiple scores that describe the condition of various attributes of the vegetation at a given site. Multiple sites were assessed and subsequently circumscribed with GIS and remote-sensed data. We explore and compare two approaches for modelling this type of data: to learn a model for each score separately (single-target approach, a regression tree), or to learn one model for all scores simultaneously (multi-target approach, a multi-target regression tree). In order to lift the predictive performance, we also employ ensembles (bagging and random forests) of regression trees and multi-target regression trees. Our results demonstrate the advantages of a multi-target over a single-target modelling approach. While there is no statistically significant difference between the multi-target and single-target models in terms of model performance, the multi-target models are smaller and faster to learn than the single-target ones. Ensembles of multi-target models, also, improve the spatial prediction of condition. The usefulness of models of vegetation condition is twofold. First, they provide an enhanced knowledge and understanding of the condition of different indigenous vegetation types, and identify possible biophysical and landscape attributes that may contribute to vegetation decline. Second, these models may be used to map the condition of indigenous vegetation, in support of biodiversity planning, management and investment decisions." @default.
- W2051808767 created "2016-06-24" @default.
- W2051808767 creator A5003324780 @default.
- W2051808767 creator A5004076545 @default.
- W2051808767 creator A5041981330 @default.
- W2051808767 creator A5047950882 @default.
- W2051808767 creator A5064609702 @default.
- W2051808767 date "2009-04-01" @default.
- W2051808767 modified "2023-10-17" @default.
- W2051808767 title "Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition" @default.
- W2051808767 cites W1967542092 @default.
- W2051808767 cites W2000950277 @default.
- W2051808767 cites W2001380411 @default.
- W2051808767 cites W2016944307 @default.
- W2051808767 cites W2024508613 @default.
- W2051808767 cites W2038407224 @default.
- W2051808767 cites W2045978033 @default.
- W2051808767 cites W2056061433 @default.
- W2051808767 cites W2056335602 @default.
- W2051808767 cites W2063623478 @default.
- W2051808767 cites W2069856475 @default.
- W2051808767 cites W2072990490 @default.
- W2051808767 cites W2075272435 @default.
- W2051808767 cites W2084356479 @default.
- W2051808767 cites W2102194393 @default.
- W2051808767 cites W2122211886 @default.
- W2051808767 cites W2123337039 @default.
- W2051808767 cites W2135293965 @default.
- W2051808767 cites W2147430252 @default.
- W2051808767 cites W2152761983 @default.
- W2051808767 cites W2156170730 @default.
- W2051808767 cites W2911964244 @default.
- W2051808767 cites W4211243502 @default.
- W2051808767 cites W4212883601 @default.
- W2051808767 doi "https://doi.org/10.1016/j.ecolmodel.2009.01.037" @default.
- W2051808767 hasPublicationYear "2009" @default.
- W2051808767 type Work @default.
- W2051808767 sameAs 2051808767 @default.
- W2051808767 citedByCount "149" @default.
- W2051808767 countsByYear W20518087672012 @default.
- W2051808767 countsByYear W20518087672013 @default.
- W2051808767 countsByYear W20518087672014 @default.
- W2051808767 countsByYear W20518087672015 @default.
- W2051808767 countsByYear W20518087672016 @default.
- W2051808767 countsByYear W20518087672017 @default.
- W2051808767 countsByYear W20518087672018 @default.
- W2051808767 countsByYear W20518087672019 @default.
- W2051808767 countsByYear W20518087672020 @default.
- W2051808767 countsByYear W20518087672021 @default.
- W2051808767 countsByYear W20518087672022 @default.
- W2051808767 countsByYear W20518087672023 @default.
- W2051808767 crossrefType "journal-article" @default.
- W2051808767 hasAuthorship W2051808767A5003324780 @default.
- W2051808767 hasAuthorship W2051808767A5004076545 @default.
- W2051808767 hasAuthorship W2051808767A5041981330 @default.
- W2051808767 hasAuthorship W2051808767A5047950882 @default.
- W2051808767 hasAuthorship W2051808767A5064609702 @default.
- W2051808767 hasConcept C105795698 @default.
- W2051808767 hasConcept C113174947 @default.
- W2051808767 hasConcept C119857082 @default.
- W2051808767 hasConcept C134306372 @default.
- W2051808767 hasConcept C142724271 @default.
- W2051808767 hasConcept C152877465 @default.
- W2051808767 hasConcept C154945302 @default.
- W2051808767 hasConcept C169258074 @default.
- W2051808767 hasConcept C2776133958 @default.
- W2051808767 hasConcept C33923547 @default.
- W2051808767 hasConcept C41008148 @default.
- W2051808767 hasConcept C45804977 @default.
- W2051808767 hasConcept C71924100 @default.
- W2051808767 hasConcept C83546350 @default.
- W2051808767 hasConceptScore W2051808767C105795698 @default.
- W2051808767 hasConceptScore W2051808767C113174947 @default.
- W2051808767 hasConceptScore W2051808767C119857082 @default.
- W2051808767 hasConceptScore W2051808767C134306372 @default.
- W2051808767 hasConceptScore W2051808767C142724271 @default.
- W2051808767 hasConceptScore W2051808767C152877465 @default.
- W2051808767 hasConceptScore W2051808767C154945302 @default.
- W2051808767 hasConceptScore W2051808767C169258074 @default.
- W2051808767 hasConceptScore W2051808767C2776133958 @default.
- W2051808767 hasConceptScore W2051808767C33923547 @default.
- W2051808767 hasConceptScore W2051808767C41008148 @default.
- W2051808767 hasConceptScore W2051808767C45804977 @default.
- W2051808767 hasConceptScore W2051808767C71924100 @default.
- W2051808767 hasConceptScore W2051808767C83546350 @default.
- W2051808767 hasIssue "8" @default.
- W2051808767 hasLocation W20518087671 @default.
- W2051808767 hasOpenAccess W2051808767 @default.
- W2051808767 hasPrimaryLocation W20518087671 @default.
- W2051808767 hasRelatedWork W1995617853 @default.
- W2051808767 hasRelatedWork W2389155397 @default.
- W2051808767 hasRelatedWork W2787485953 @default.
- W2051808767 hasRelatedWork W2802491896 @default.
- W2051808767 hasRelatedWork W2940614149 @default.
- W2051808767 hasRelatedWork W3191198889 @default.
- W2051808767 hasRelatedWork W3217432596 @default.
- W2051808767 hasRelatedWork W4288365262 @default.
- W2051808767 hasRelatedWork W4289356671 @default.