Matches in SemOpenAlex for { <https://semopenalex.org/work/W2051837164> ?p ?o ?g. }
- W2051837164 endingPage "5175" @default.
- W2051837164 startingPage "5159" @default.
- W2051837164 abstract "This paper evaluates the performance of a recently developed approach for wide-area stem volume estimations based on airborne laser scanning (ALS) and national forest inventory (NFI) data in the case where data recorded under operational conditions are used as input. This entails that neither ALS data nor NFI samples were collected and optimized for the current study. The approach was tested for the Austrian state of Vorarlberg, which covers an area of 2601 km2 and encloses about 970 km2 of forest land. ALS data with point densities varying between 1 and 4 points m−2 were acquired in the framework of a commercial state-wide terrain mapping project during several winter- and summer-flight campaigns. The stem volume model was calibrated with all NFI data available for Vorarlberg, whereas additional local forest inventory data were used for independent validation. Moreover, several relevant operational issues were addressed in this study, such as the determination of the optimum area used to calculate the reference laser metrics input to the model, the effect of gridding point cloud data to speed up processing, and the stratification of input data into coniferous and deciduous sample plots. Without tree species stratification and based on the 3D laser heights model, calibration provided a maximum R2 of 0.79 and a standard deviation (SD) of residuals derived from cross-validation of 107.4 m3 ha−1 (31.5%). Calibrating the model only with coniferous samples increased the achieved R2 to 0.81 and decreased SD to 104.8 m3 ha−1 (29.7%). As only eight NFI sample plots were available for deciduous forest a robust calibration of a separate model could not be obtained. Calibrating the model with a rasterized canopy height model (CHM) instead of using the 3D laser heights just led to a slight decrease in accuracy (R2 = 0.75, SD = 120.9 m3 ha−1 (35.5%) without forest-type stratification and R2 = 0.78 and SD = 117.2 m3 ha−1 (33.1%) for the coniferous stem volume model). Finally, the stem volume model calibrated with CHM data was adopted to generate a stem volume map of the entire State of Vorarlberg. Validation of this map with the additional local forest inventory data confirmed the accuracies (R2 = 0.75; SD = 135.6 m3 ha−1 (32.3%)) that were derived during calibration of the stem volume model based on the NFI data. The models and methods presented in this study are used operationally for forest and environment policy purposes and practical applications in Austria." @default.
- W2051837164 created "2016-06-24" @default.
- W2051837164 creator A5010005553 @default.
- W2051837164 creator A5024904329 @default.
- W2051837164 creator A5033327869 @default.
- W2051837164 creator A5045019206 @default.
- W2051837164 creator A5061910536 @default.
- W2051837164 creator A5066754586 @default.
- W2051837164 date "2009-09-22" @default.
- W2051837164 modified "2023-09-24" @default.
- W2051837164 title "Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data" @default.
- W2051837164 cites W1965597456 @default.
- W2051837164 cites W1973523498 @default.
- W2051837164 cites W1987794512 @default.
- W2051837164 cites W1996263757 @default.
- W2051837164 cites W1997732436 @default.
- W2051837164 cites W1998222021 @default.
- W2051837164 cites W2017131791 @default.
- W2051837164 cites W2027672019 @default.
- W2051837164 cites W2042891401 @default.
- W2051837164 cites W2051586552 @default.
- W2051837164 cites W2055314812 @default.
- W2051837164 cites W2056380340 @default.
- W2051837164 cites W2084525416 @default.
- W2051837164 cites W2084746297 @default.
- W2051837164 cites W2098747657 @default.
- W2051837164 cites W2098919237 @default.
- W2051837164 cites W2106488983 @default.
- W2051837164 cites W2121212061 @default.
- W2051837164 cites W2126540005 @default.
- W2051837164 cites W2133160971 @default.
- W2051837164 doi "https://doi.org/10.1080/01431160903022894" @default.
- W2051837164 hasPublicationYear "2009" @default.
- W2051837164 type Work @default.
- W2051837164 sameAs 2051837164 @default.
- W2051837164 citedByCount "51" @default.
- W2051837164 countsByYear W20518371642012 @default.
- W2051837164 countsByYear W20518371642013 @default.
- W2051837164 countsByYear W20518371642014 @default.
- W2051837164 countsByYear W20518371642015 @default.
- W2051837164 countsByYear W20518371642016 @default.
- W2051837164 countsByYear W20518371642017 @default.
- W2051837164 countsByYear W20518371642018 @default.
- W2051837164 countsByYear W20518371642019 @default.
- W2051837164 countsByYear W20518371642020 @default.
- W2051837164 countsByYear W20518371642021 @default.
- W2051837164 countsByYear W20518371642022 @default.
- W2051837164 countsByYear W20518371642023 @default.
- W2051837164 crossrefType "journal-article" @default.
- W2051837164 hasAuthorship W2051837164A5010005553 @default.
- W2051837164 hasAuthorship W2051837164A5024904329 @default.
- W2051837164 hasAuthorship W2051837164A5033327869 @default.
- W2051837164 hasAuthorship W2051837164A5045019206 @default.
- W2051837164 hasAuthorship W2051837164A5061910536 @default.
- W2051837164 hasAuthorship W2051837164A5066754586 @default.
- W2051837164 hasConcept C105795698 @default.
- W2051837164 hasConcept C120665830 @default.
- W2051837164 hasConcept C121332964 @default.
- W2051837164 hasConcept C131979681 @default.
- W2051837164 hasConcept C141349535 @default.
- W2051837164 hasConcept C147103442 @default.
- W2051837164 hasConcept C161840515 @default.
- W2051837164 hasConcept C165838908 @default.
- W2051837164 hasConcept C185592680 @default.
- W2051837164 hasConcept C18903297 @default.
- W2051837164 hasConcept C198531522 @default.
- W2051837164 hasConcept C20556612 @default.
- W2051837164 hasConcept C205649164 @default.
- W2051837164 hasConcept C22679943 @default.
- W2051837164 hasConcept C28631016 @default.
- W2051837164 hasConcept C31972630 @default.
- W2051837164 hasConcept C33283694 @default.
- W2051837164 hasConcept C33923547 @default.
- W2051837164 hasConcept C39432304 @default.
- W2051837164 hasConcept C41008148 @default.
- W2051837164 hasConcept C43617362 @default.
- W2051837164 hasConcept C51399673 @default.
- W2051837164 hasConcept C520434653 @default.
- W2051837164 hasConcept C54286561 @default.
- W2051837164 hasConcept C58640448 @default.
- W2051837164 hasConcept C60478076 @default.
- W2051837164 hasConcept C62520636 @default.
- W2051837164 hasConcept C62649853 @default.
- W2051837164 hasConcept C77088390 @default.
- W2051837164 hasConcept C86803240 @default.
- W2051837164 hasConceptScore W2051837164C105795698 @default.
- W2051837164 hasConceptScore W2051837164C120665830 @default.
- W2051837164 hasConceptScore W2051837164C121332964 @default.
- W2051837164 hasConceptScore W2051837164C131979681 @default.
- W2051837164 hasConceptScore W2051837164C141349535 @default.
- W2051837164 hasConceptScore W2051837164C147103442 @default.
- W2051837164 hasConceptScore W2051837164C161840515 @default.
- W2051837164 hasConceptScore W2051837164C165838908 @default.
- W2051837164 hasConceptScore W2051837164C185592680 @default.
- W2051837164 hasConceptScore W2051837164C18903297 @default.
- W2051837164 hasConceptScore W2051837164C198531522 @default.
- W2051837164 hasConceptScore W2051837164C20556612 @default.
- W2051837164 hasConceptScore W2051837164C205649164 @default.