Matches in SemOpenAlex for { <https://semopenalex.org/work/W2052005497> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2052005497 endingPage "797" @default.
- W2052005497 startingPage "794" @default.
- W2052005497 abstract "Let $X_1, X_2, cdots, X_n$ be a sample of a one-dimensional random variable $X$; let the order statistic $T(X_1, X_2, cdots, X_n)$ be defined in such a manner that $T(x_1, x_2, cdots, x_n) = (x^{(1)}, x^{(2)}, cdots, x^{(n)})$ where $x^{(1)} leqq x^{(2)} leqq cdots leqq x^{(n)}$ denote the ordered $x's$; and let $Omega$ be a class of one-dimensional cpf's, i.e., cumulative probability functions. The order statistic, $T$, is said to be a complete statistic with respect to the class, ${P^{(n)} mid P epsilon Omega}$, of $n$-fold power probability distributions if $E_p^{(n)}{hlbrack T(X_1, cdots, X_n)rbrack} = 0$ for all $P epsilon Omega$ implies $hlbrack T(x_1, cdots, x_n)rbrack = 0, a.e., P^{(n)}$, for all $F epsilon Omega$. The class $Omega$ is said to be symmetrically complete whenever the latter condition holds. Since the completeness of the order statistic plays an essential role in nonparametric estimation and hypothesis testing, e.g., Fraser [2] and Bell [1], it is of interest to determine those classes of cpf's for which the order statistic is complete. Many of the traditionally studied classes of cpf's on the real line are known to be symmetrically complete, e.g., all continuous cpf's ([4], pp. 131-134, 152-153); all cpf's absolutely continuous with respect to Lebesgue measure ([3], pp. 23-31); and all exponentials of a certain form ([4], pp. 131-134). The object of this note is to present a different ([4], pp. 131-134, 152-153) demonstration of the symmetric completeness of the class of all continuous cpf's; and to extend this and other known completeness results to probability spaces other than the real line, e.g., Fraser [2], and Lehmann and Scheffe [5], [6]. The paper is divided into four sections. Section 1 contains the introduction and summary. In Section 2 the notation and terminology are introduced. The main theorem is presented in Section 3, and some consequences of the proof of the main theorem and known results are indicated in Section 4." @default.
- W2052005497 created "2016-06-24" @default.
- W2052005497 creator A5039125390 @default.
- W2052005497 creator A5056138840 @default.
- W2052005497 creator A5082188142 @default.
- W2052005497 date "1960-09-01" @default.
- W2052005497 modified "2023-09-24" @default.
- W2052005497 title "On the Completeness of Order Statistics" @default.
- W2052005497 cites W2045638068 @default.
- W2052005497 cites W2059024517 @default.
- W2052005497 cites W2325640911 @default.
- W2052005497 doi "https://doi.org/10.1214/aoms/1177705808" @default.
- W2052005497 hasPublicationYear "1960" @default.
- W2052005497 type Work @default.
- W2052005497 sameAs 2052005497 @default.
- W2052005497 citedByCount "31" @default.
- W2052005497 countsByYear W20520054972012 @default.
- W2052005497 countsByYear W20520054972016 @default.
- W2052005497 countsByYear W20520054972018 @default.
- W2052005497 countsByYear W20520054972023 @default.
- W2052005497 crossrefType "journal-article" @default.
- W2052005497 hasAuthorship W2052005497A5039125390 @default.
- W2052005497 hasAuthorship W2052005497A5056138840 @default.
- W2052005497 hasAuthorship W2052005497A5082188142 @default.
- W2052005497 hasBestOaLocation W20520054971 @default.
- W2052005497 hasConcept C10138342 @default.
- W2052005497 hasConcept C102366305 @default.
- W2052005497 hasConcept C105795698 @default.
- W2052005497 hasConcept C114614502 @default.
- W2052005497 hasConcept C118615104 @default.
- W2052005497 hasConcept C118733216 @default.
- W2052005497 hasConcept C121332964 @default.
- W2052005497 hasConcept C134306372 @default.
- W2052005497 hasConcept C14158598 @default.
- W2052005497 hasConcept C162324750 @default.
- W2052005497 hasConcept C17231256 @default.
- W2052005497 hasConcept C182306322 @default.
- W2052005497 hasConcept C2777105136 @default.
- W2052005497 hasConcept C2779557605 @default.
- W2052005497 hasConcept C33923547 @default.
- W2052005497 hasConcept C44082924 @default.
- W2052005497 hasConcept C62520636 @default.
- W2052005497 hasConcept C89128539 @default.
- W2052005497 hasConceptScore W2052005497C10138342 @default.
- W2052005497 hasConceptScore W2052005497C102366305 @default.
- W2052005497 hasConceptScore W2052005497C105795698 @default.
- W2052005497 hasConceptScore W2052005497C114614502 @default.
- W2052005497 hasConceptScore W2052005497C118615104 @default.
- W2052005497 hasConceptScore W2052005497C118733216 @default.
- W2052005497 hasConceptScore W2052005497C121332964 @default.
- W2052005497 hasConceptScore W2052005497C134306372 @default.
- W2052005497 hasConceptScore W2052005497C14158598 @default.
- W2052005497 hasConceptScore W2052005497C162324750 @default.
- W2052005497 hasConceptScore W2052005497C17231256 @default.
- W2052005497 hasConceptScore W2052005497C182306322 @default.
- W2052005497 hasConceptScore W2052005497C2777105136 @default.
- W2052005497 hasConceptScore W2052005497C2779557605 @default.
- W2052005497 hasConceptScore W2052005497C33923547 @default.
- W2052005497 hasConceptScore W2052005497C44082924 @default.
- W2052005497 hasConceptScore W2052005497C62520636 @default.
- W2052005497 hasConceptScore W2052005497C89128539 @default.
- W2052005497 hasIssue "3" @default.
- W2052005497 hasLocation W20520054971 @default.
- W2052005497 hasOpenAccess W2052005497 @default.
- W2052005497 hasPrimaryLocation W20520054971 @default.
- W2052005497 hasRelatedWork W1501992111 @default.
- W2052005497 hasRelatedWork W1966089281 @default.
- W2052005497 hasRelatedWork W2024356062 @default.
- W2052005497 hasRelatedWork W2125359971 @default.
- W2052005497 hasRelatedWork W2163875170 @default.
- W2052005497 hasRelatedWork W2168079527 @default.
- W2052005497 hasRelatedWork W2182868615 @default.
- W2052005497 hasRelatedWork W2808154356 @default.
- W2052005497 hasRelatedWork W2951237084 @default.
- W2052005497 hasRelatedWork W4301368977 @default.
- W2052005497 hasVolume "31" @default.
- W2052005497 isParatext "false" @default.
- W2052005497 isRetracted "false" @default.
- W2052005497 magId "2052005497" @default.
- W2052005497 workType "article" @default.