Matches in SemOpenAlex for { <https://semopenalex.org/work/W2052079413> ?p ?o ?g. }
- W2052079413 abstract "Linear regression is a parametric model which is ubiquitous in scientific analysis. The classical setup where the observations and responses, i.e., (x <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i</sub> , y <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i</sub> ) pairs, are Euclidean is well studied. The setting where yi is manifold valued is a topic of much interest, motivated by applications in shape analysis, topic modeling, and medical imaging. Recent work gives strategies for max-margin classifiers, principal components analysis, and dictionary learning on certain types of manifolds. For parametric regression specifically, results within the last year provide mechanisms to regress one real-valued parameter, x <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i</sub> ∈ R, against a manifold-valued variable, y <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i</sub> ∈ M. We seek to substantially extend the operating range of such methods by deriving schemes for multivariate multiple linear regression -- a manifold-valued dependent variable against multiple independent variables, i.e., f: ℝ <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sup> → M. Our variational algorithm efficiently solves for multiple geodesic bases on the manifold concurrently via gradient updates. This allows us to answer questions such as: what is the relationship of the measurement at voxel y to disease when conditioned on age and gender. We show applications to statistical analysis of diffusion weighted images, which give rise to regression tasks on the manifold GL(n)/O(n) for diffusion tensor images (DTI) and the Hilbert unit sphere for orientation distribution functions (ODF) from high angular resolution acquisition. The companion open-source code is available on nitrc.org/projects/riem_mglm." @default.
- W2052079413 created "2016-06-24" @default.
- W2052079413 creator A5002967684 @default.
- W2052079413 creator A5011613330 @default.
- W2052079413 creator A5023997184 @default.
- W2052079413 creator A5029674397 @default.
- W2052079413 creator A5044580005 @default.
- W2052079413 creator A5084579251 @default.
- W2052079413 creator A5084814930 @default.
- W2052079413 creator A5088095690 @default.
- W2052079413 date "2014-06-01" @default.
- W2052079413 modified "2023-10-01" @default.
- W2052079413 title "Multivariate General Linear Models (MGLM) on Riemannian Manifolds with Applications to Statistical Analysis of Diffusion Weighted Images" @default.
- W2052079413 cites W1479979375 @default.
- W2052079413 cites W1491351298 @default.
- W2052079413 cites W1557324374 @default.
- W2052079413 cites W1926279062 @default.
- W2052079413 cites W1988954604 @default.
- W2052079413 cites W2000507951 @default.
- W2052079413 cites W2017262657 @default.
- W2052079413 cites W2034570192 @default.
- W2052079413 cites W2036632921 @default.
- W2052079413 cites W2042830903 @default.
- W2052079413 cites W2052570168 @default.
- W2052079413 cites W2084233335 @default.
- W2052079413 cites W2094997686 @default.
- W2052079413 cites W2109409043 @default.
- W2052079413 cites W2125949583 @default.
- W2052079413 cites W2150173222 @default.
- W2052079413 cites W2153119123 @default.
- W2052079413 cites W4206033904 @default.
- W2052079413 cites W4249875616 @default.
- W2052079413 doi "https://doi.org/10.1109/cvpr.2014.352" @default.
- W2052079413 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4288036" @default.
- W2052079413 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25580070" @default.
- W2052079413 hasPublicationYear "2014" @default.
- W2052079413 type Work @default.
- W2052079413 sameAs 2052079413 @default.
- W2052079413 citedByCount "42" @default.
- W2052079413 countsByYear W20520794132014 @default.
- W2052079413 countsByYear W20520794132015 @default.
- W2052079413 countsByYear W20520794132016 @default.
- W2052079413 countsByYear W20520794132017 @default.
- W2052079413 countsByYear W20520794132018 @default.
- W2052079413 countsByYear W20520794132019 @default.
- W2052079413 countsByYear W20520794132020 @default.
- W2052079413 countsByYear W20520794132021 @default.
- W2052079413 countsByYear W20520794132022 @default.
- W2052079413 countsByYear W20520794132023 @default.
- W2052079413 crossrefType "proceedings-article" @default.
- W2052079413 hasAuthorship W2052079413A5002967684 @default.
- W2052079413 hasAuthorship W2052079413A5011613330 @default.
- W2052079413 hasAuthorship W2052079413A5023997184 @default.
- W2052079413 hasAuthorship W2052079413A5029674397 @default.
- W2052079413 hasAuthorship W2052079413A5044580005 @default.
- W2052079413 hasAuthorship W2052079413A5084579251 @default.
- W2052079413 hasAuthorship W2052079413A5084814930 @default.
- W2052079413 hasAuthorship W2052079413A5088095690 @default.
- W2052079413 hasBestOaLocation W20520794132 @default.
- W2052079413 hasConcept C11413529 @default.
- W2052079413 hasConcept C114614502 @default.
- W2052079413 hasConcept C119857082 @default.
- W2052079413 hasConcept C127413603 @default.
- W2052079413 hasConcept C154945302 @default.
- W2052079413 hasConcept C165818556 @default.
- W2052079413 hasConcept C2524010 @default.
- W2052079413 hasConcept C33923547 @default.
- W2052079413 hasConcept C41008148 @default.
- W2052079413 hasConcept C48921125 @default.
- W2052079413 hasConcept C529865628 @default.
- W2052079413 hasConcept C78519656 @default.
- W2052079413 hasConceptScore W2052079413C11413529 @default.
- W2052079413 hasConceptScore W2052079413C114614502 @default.
- W2052079413 hasConceptScore W2052079413C119857082 @default.
- W2052079413 hasConceptScore W2052079413C127413603 @default.
- W2052079413 hasConceptScore W2052079413C154945302 @default.
- W2052079413 hasConceptScore W2052079413C165818556 @default.
- W2052079413 hasConceptScore W2052079413C2524010 @default.
- W2052079413 hasConceptScore W2052079413C33923547 @default.
- W2052079413 hasConceptScore W2052079413C41008148 @default.
- W2052079413 hasConceptScore W2052079413C48921125 @default.
- W2052079413 hasConceptScore W2052079413C529865628 @default.
- W2052079413 hasConceptScore W2052079413C78519656 @default.
- W2052079413 hasLocation W20520794131 @default.
- W2052079413 hasLocation W20520794132 @default.
- W2052079413 hasLocation W20520794133 @default.
- W2052079413 hasLocation W20520794134 @default.
- W2052079413 hasOpenAccess W2052079413 @default.
- W2052079413 hasPrimaryLocation W20520794131 @default.
- W2052079413 hasRelatedWork W1819043602 @default.
- W2052079413 hasRelatedWork W1974584795 @default.
- W2052079413 hasRelatedWork W1977009394 @default.
- W2052079413 hasRelatedWork W1978042415 @default.
- W2052079413 hasRelatedWork W2066635351 @default.
- W2052079413 hasRelatedWork W2071383071 @default.
- W2052079413 hasRelatedWork W2078299291 @default.
- W2052079413 hasRelatedWork W2383288821 @default.
- W2052079413 hasRelatedWork W2998142867 @default.
- W2052079413 hasRelatedWork W3111121251 @default.
- W2052079413 isParatext "false" @default.