Matches in SemOpenAlex for { <https://semopenalex.org/work/W2052172657> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2052172657 endingPage "1" @default.
- W2052172657 startingPage "1" @default.
- W2052172657 abstract "Univariate thresholding techniques based on high resolution time-frequency algorithms, such as the synchrosqueezing transform, have emerged as important tools in removing noise from real world data. Low cost multichannel sensor technology has highlighted the need for direct multivariate denoising, and to this end, we introduce a class of multivariate denoising techniques based on the synchrosqueezing transform. This is achieved by partitioning the time-frequency domain so as to identify a set of modulated oscillations common to the constituent data channels within multivariate data, and by employing a modified universal threshold in order to remove noise components, while retaining signal components of interest. This principle is used to introduce both the wavelet and Fourier based multivariate synchrosqueezing denoising algorithms. The performance of the proposed multivariate denoising algorithm is illustrated on both synthetic and real world data." @default.
- W2052172657 created "2016-06-24" @default.
- W2052172657 creator A5032988086 @default.
- W2052172657 creator A5046992958 @default.
- W2052172657 date "2015-01-01" @default.
- W2052172657 modified "2023-09-23" @default.
- W2052172657 title "A Class of Multivariate Denoising Algorithms Based on Synchrosqueezing" @default.
- W2052172657 cites W1968362603 @default.
- W2052172657 cites W1984918318 @default.
- W2052172657 cites W1989940636 @default.
- W2052172657 cites W2000607090 @default.
- W2052172657 cites W2007221293 @default.
- W2052172657 cites W2008278511 @default.
- W2052172657 cites W2013454018 @default.
- W2052172657 cites W2018897852 @default.
- W2052172657 cites W2048032753 @default.
- W2052172657 cites W2053020855 @default.
- W2052172657 cites W2054878302 @default.
- W2052172657 cites W2077664060 @default.
- W2052172657 cites W2081986197 @default.
- W2052172657 cites W2090218979 @default.
- W2052172657 cites W2091752829 @default.
- W2052172657 cites W2109896502 @default.
- W2052172657 cites W2110075977 @default.
- W2052172657 cites W2113639963 @default.
- W2052172657 cites W2120006607 @default.
- W2052172657 cites W2140147143 @default.
- W2052172657 cites W2142085250 @default.
- W2052172657 cites W2142224505 @default.
- W2052172657 cites W2146842127 @default.
- W2052172657 cites W2163630665 @default.
- W2052172657 cites W2169721303 @default.
- W2052172657 cites W4214806317 @default.
- W2052172657 cites W4376849658 @default.
- W2052172657 cites W3141408015 @default.
- W2052172657 doi "https://doi.org/10.1109/tsp.2015.2404307" @default.
- W2052172657 hasPublicationYear "2015" @default.
- W2052172657 type Work @default.
- W2052172657 sameAs 2052172657 @default.
- W2052172657 citedByCount "23" @default.
- W2052172657 countsByYear W20521726572014 @default.
- W2052172657 countsByYear W20521726572015 @default.
- W2052172657 countsByYear W20521726572016 @default.
- W2052172657 countsByYear W20521726572017 @default.
- W2052172657 countsByYear W20521726572018 @default.
- W2052172657 countsByYear W20521726572019 @default.
- W2052172657 countsByYear W20521726572020 @default.
- W2052172657 countsByYear W20521726572021 @default.
- W2052172657 countsByYear W20521726572022 @default.
- W2052172657 countsByYear W20521726572023 @default.
- W2052172657 crossrefType "journal-article" @default.
- W2052172657 hasAuthorship W2052172657A5032988086 @default.
- W2052172657 hasAuthorship W2052172657A5046992958 @default.
- W2052172657 hasConcept C11413529 @default.
- W2052172657 hasConcept C115961682 @default.
- W2052172657 hasConcept C119857082 @default.
- W2052172657 hasConcept C153180895 @default.
- W2052172657 hasConcept C154945302 @default.
- W2052172657 hasConcept C161584116 @default.
- W2052172657 hasConcept C163294075 @default.
- W2052172657 hasConcept C191178318 @default.
- W2052172657 hasConcept C199163554 @default.
- W2052172657 hasConcept C33923547 @default.
- W2052172657 hasConcept C41008148 @default.
- W2052172657 hasConcept C47432892 @default.
- W2052172657 hasConcept C99498987 @default.
- W2052172657 hasConceptScore W2052172657C11413529 @default.
- W2052172657 hasConceptScore W2052172657C115961682 @default.
- W2052172657 hasConceptScore W2052172657C119857082 @default.
- W2052172657 hasConceptScore W2052172657C153180895 @default.
- W2052172657 hasConceptScore W2052172657C154945302 @default.
- W2052172657 hasConceptScore W2052172657C161584116 @default.
- W2052172657 hasConceptScore W2052172657C163294075 @default.
- W2052172657 hasConceptScore W2052172657C191178318 @default.
- W2052172657 hasConceptScore W2052172657C199163554 @default.
- W2052172657 hasConceptScore W2052172657C33923547 @default.
- W2052172657 hasConceptScore W2052172657C41008148 @default.
- W2052172657 hasConceptScore W2052172657C47432892 @default.
- W2052172657 hasConceptScore W2052172657C99498987 @default.
- W2052172657 hasLocation W20521726571 @default.
- W2052172657 hasOpenAccess W2052172657 @default.
- W2052172657 hasPrimaryLocation W20521726571 @default.
- W2052172657 hasRelatedWork W1966397516 @default.
- W2052172657 hasRelatedWork W2033000528 @default.
- W2052172657 hasRelatedWork W2045260324 @default.
- W2052172657 hasRelatedWork W2133587243 @default.
- W2052172657 hasRelatedWork W2376043790 @default.
- W2052172657 hasRelatedWork W2541950815 @default.
- W2052172657 hasRelatedWork W2792520941 @default.
- W2052172657 hasRelatedWork W3094804382 @default.
- W2052172657 hasRelatedWork W3175271736 @default.
- W2052172657 hasRelatedWork W3197574493 @default.
- W2052172657 isParatext "false" @default.
- W2052172657 isRetracted "false" @default.
- W2052172657 magId "2052172657" @default.
- W2052172657 workType "article" @default.