Matches in SemOpenAlex for { <https://semopenalex.org/work/W2052204037> ?p ?o ?g. }
- W2052204037 endingPage "1152" @default.
- W2052204037 startingPage "1143" @default.
- W2052204037 abstract "A novel computational approach is proposed to investigate the shear modulus of graphene nanostructures. In this approach, the factors that affect the shear modulus of graphene structures are analysed using an integrated artificial intelligence (AI) cluster comprising molecular dynamics (MD) and gene expression programming. The MD-based-AI approach has the ability to formulate the explicit relationship of shear modulus graphene nanostructure with respect to aspect ratio, temperature, number of atomic planes and vacancy defects. In addition, the shear modulus of graphene predicted using an integrated MD-based-AI model is in good agreement with that of experimental results obtained from the literature. The sensitivity and parametric analysis were further conducted to find out specific influence and variation of each of the input system parameters on the shear modulus of two graphene structures. It was found that the number of defects has the most dominating influence on the shear modulus of graphene nanostructure." @default.
- W2052204037 created "2016-06-24" @default.
- W2052204037 creator A5003088287 @default.
- W2052204037 creator A5011364010 @default.
- W2052204037 creator A5023001374 @default.
- W2052204037 creator A5056543738 @default.
- W2052204037 creator A5068512066 @default.
- W2052204037 creator A5072418855 @default.
- W2052204037 creator A5083532095 @default.
- W2052204037 creator A5085788133 @default.
- W2052204037 date "2014-09-08" @default.
- W2052204037 modified "2023-09-26" @default.
- W2052204037 title "Application of artificial intelligence technique for modelling elastic properties of 2D nanoscale material" @default.
- W2052204037 cites W1967754715 @default.
- W2052204037 cites W1969256165 @default.
- W2052204037 cites W1972970620 @default.
- W2052204037 cites W1991794210 @default.
- W2052204037 cites W1992217939 @default.
- W2052204037 cites W1992815750 @default.
- W2052204037 cites W1994233412 @default.
- W2052204037 cites W1995764162 @default.
- W2052204037 cites W1997304481 @default.
- W2052204037 cites W1998072863 @default.
- W2052204037 cites W2000418695 @default.
- W2052204037 cites W2003029368 @default.
- W2052204037 cites W2005944647 @default.
- W2052204037 cites W2010316643 @default.
- W2052204037 cites W2010971702 @default.
- W2052204037 cites W2017196167 @default.
- W2052204037 cites W2018496071 @default.
- W2052204037 cites W2019891757 @default.
- W2052204037 cites W2026685552 @default.
- W2052204037 cites W2029391760 @default.
- W2052204037 cites W2033083753 @default.
- W2052204037 cites W2039743502 @default.
- W2052204037 cites W2041325773 @default.
- W2052204037 cites W2047049379 @default.
- W2052204037 cites W2051251164 @default.
- W2052204037 cites W2054102432 @default.
- W2052204037 cites W2057892740 @default.
- W2052204037 cites W2058122340 @default.
- W2052204037 cites W2059140581 @default.
- W2052204037 cites W2061054490 @default.
- W2052204037 cites W2065959225 @default.
- W2052204037 cites W2072282741 @default.
- W2052204037 cites W2076388009 @default.
- W2052204037 cites W2078792724 @default.
- W2052204037 cites W2081207534 @default.
- W2052204037 cites W2085786573 @default.
- W2052204037 cites W2090935252 @default.
- W2052204037 cites W2093711802 @default.
- W2052204037 cites W2146564548 @default.
- W2052204037 cites W2152832683 @default.
- W2052204037 cites W2158203102 @default.
- W2052204037 cites W2160653518 @default.
- W2052204037 cites W2172069609 @default.
- W2052204037 cites W4229538322 @default.
- W2052204037 doi "https://doi.org/10.1080/08927022.2014.951351" @default.
- W2052204037 hasPublicationYear "2014" @default.
- W2052204037 type Work @default.
- W2052204037 sameAs 2052204037 @default.
- W2052204037 citedByCount "6" @default.
- W2052204037 countsByYear W20522040372015 @default.
- W2052204037 countsByYear W20522040372019 @default.
- W2052204037 countsByYear W20522040372021 @default.
- W2052204037 countsByYear W20522040372023 @default.
- W2052204037 crossrefType "journal-article" @default.
- W2052204037 hasAuthorship W2052204037A5003088287 @default.
- W2052204037 hasAuthorship W2052204037A5011364010 @default.
- W2052204037 hasAuthorship W2052204037A5023001374 @default.
- W2052204037 hasAuthorship W2052204037A5056543738 @default.
- W2052204037 hasAuthorship W2052204037A5068512066 @default.
- W2052204037 hasAuthorship W2052204037A5072418855 @default.
- W2052204037 hasAuthorship W2052204037A5083532095 @default.
- W2052204037 hasAuthorship W2052204037A5085788133 @default.
- W2052204037 hasConcept C105795698 @default.
- W2052204037 hasConcept C117251300 @default.
- W2052204037 hasConcept C147597530 @default.
- W2052204037 hasConcept C159985019 @default.
- W2052204037 hasConcept C171250308 @default.
- W2052204037 hasConcept C185592680 @default.
- W2052204037 hasConcept C186187911 @default.
- W2052204037 hasConcept C192562407 @default.
- W2052204037 hasConcept C193867417 @default.
- W2052204037 hasConcept C21141959 @default.
- W2052204037 hasConcept C30080830 @default.
- W2052204037 hasConcept C33923547 @default.
- W2052204037 hasConcept C41279357 @default.
- W2052204037 hasConcept C59593255 @default.
- W2052204037 hasConcept C96035792 @default.
- W2052204037 hasConceptScore W2052204037C105795698 @default.
- W2052204037 hasConceptScore W2052204037C117251300 @default.
- W2052204037 hasConceptScore W2052204037C147597530 @default.
- W2052204037 hasConceptScore W2052204037C159985019 @default.
- W2052204037 hasConceptScore W2052204037C171250308 @default.
- W2052204037 hasConceptScore W2052204037C185592680 @default.
- W2052204037 hasConceptScore W2052204037C186187911 @default.
- W2052204037 hasConceptScore W2052204037C192562407 @default.