Matches in SemOpenAlex for { <https://semopenalex.org/work/W2052206816> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2052206816 endingPage "799" @default.
- W2052206816 startingPage "794" @default.
- W2052206816 abstract "Energy production and distributing have critical importance for all countries especially developing countries. Studies about energy consumption, distributing and planning have much importance at the present day. In order to manage any power plant or take precautions about energy subject, many kinds of observations are used for short, mid and long term forecasting. Especially long term forecasting is in need to plan and carry on future energy demand and investment such as size of energy plant and location. Long term forecasting often includes power consumption data for past years, national incoming per year, rates of civilization, increasing population rates and moreover economical parameters. Long term forecasting data vary from one month to several years. Some of the forecasting models use mathematical formulas and statistical models such as correlation and regression models. In this study, artificial intelligence is used to forecast long term energy demand. Artificial intelligences are widely used for engineering problems to solve and obtain valid solutions. Adaptive neural fuzzy inference system is one of the most famous artificial intelligence methods and has been widely used in literature. In addition to numerical inputs, Adaptive neural fuzzy inference system has linguistics inputs such as good, bad and ugly. Adaptive neural fuzzy inference system is used to obtain long term forecasting results and the results are compared to mathematical methods to show validity and error levels. In order to show error levels, mean absolute error and mean absolute error percentage are used. Mean absolute error and mean absolute error percentages are very common and practical methods in literature. The obtained error results, from 2003 to 2025, mean absolute error and mean absolute percentage error are 1.504313 and 0.82439, respectively. Success of Adaptive neural fuzzy inference system for energy demand forecasting is 99.17%." @default.
- W2052206816 created "2016-06-24" @default.
- W2052206816 creator A5001177882 @default.
- W2052206816 creator A5048376854 @default.
- W2052206816 date "2012-01-01" @default.
- W2052206816 modified "2023-09-23" @default.
- W2052206816 title "Long-term load forecasting based on adaptive neural fuzzy inference system using real energy data" @default.
- W2052206816 cites W1965192309 @default.
- W2052206816 cites W1988164075 @default.
- W2052206816 cites W1990166396 @default.
- W2052206816 cites W2019207321 @default.
- W2052206816 cites W2022642836 @default.
- W2052206816 cites W2023526924 @default.
- W2052206816 cites W2050412860 @default.
- W2052206816 cites W2052206816 @default.
- W2052206816 cites W2057323528 @default.
- W2052206816 cites W2058791286 @default.
- W2052206816 cites W2068928708 @default.
- W2052206816 cites W2081381307 @default.
- W2052206816 cites W2124290836 @default.
- W2052206816 cites W2133321814 @default.
- W2052206816 cites W2137900839 @default.
- W2052206816 cites W2489782956 @default.
- W2052206816 cites W65445265 @default.
- W2052206816 doi "https://doi.org/10.1016/j.egypro.2011.12.1013" @default.
- W2052206816 hasPublicationYear "2012" @default.
- W2052206816 type Work @default.
- W2052206816 sameAs 2052206816 @default.
- W2052206816 citedByCount "44" @default.
- W2052206816 countsByYear W20522068162012 @default.
- W2052206816 countsByYear W20522068162013 @default.
- W2052206816 countsByYear W20522068162014 @default.
- W2052206816 countsByYear W20522068162015 @default.
- W2052206816 countsByYear W20522068162016 @default.
- W2052206816 countsByYear W20522068162017 @default.
- W2052206816 countsByYear W20522068162018 @default.
- W2052206816 countsByYear W20522068162019 @default.
- W2052206816 countsByYear W20522068162020 @default.
- W2052206816 countsByYear W20522068162021 @default.
- W2052206816 countsByYear W20522068162022 @default.
- W2052206816 crossrefType "journal-article" @default.
- W2052206816 hasAuthorship W2052206816A5001177882 @default.
- W2052206816 hasAuthorship W2052206816A5048376854 @default.
- W2052206816 hasBestOaLocation W20522068161 @default.
- W2052206816 hasConcept C105795698 @default.
- W2052206816 hasConcept C121332964 @default.
- W2052206816 hasConcept C124101348 @default.
- W2052206816 hasConcept C139945424 @default.
- W2052206816 hasConcept C149782125 @default.
- W2052206816 hasConcept C150217764 @default.
- W2052206816 hasConcept C154945302 @default.
- W2052206816 hasConcept C186108316 @default.
- W2052206816 hasConcept C195975749 @default.
- W2052206816 hasConcept C33923547 @default.
- W2052206816 hasConcept C41008148 @default.
- W2052206816 hasConcept C50644808 @default.
- W2052206816 hasConcept C58166 @default.
- W2052206816 hasConcept C61797465 @default.
- W2052206816 hasConcept C62520636 @default.
- W2052206816 hasConceptScore W2052206816C105795698 @default.
- W2052206816 hasConceptScore W2052206816C121332964 @default.
- W2052206816 hasConceptScore W2052206816C124101348 @default.
- W2052206816 hasConceptScore W2052206816C139945424 @default.
- W2052206816 hasConceptScore W2052206816C149782125 @default.
- W2052206816 hasConceptScore W2052206816C150217764 @default.
- W2052206816 hasConceptScore W2052206816C154945302 @default.
- W2052206816 hasConceptScore W2052206816C186108316 @default.
- W2052206816 hasConceptScore W2052206816C195975749 @default.
- W2052206816 hasConceptScore W2052206816C33923547 @default.
- W2052206816 hasConceptScore W2052206816C41008148 @default.
- W2052206816 hasConceptScore W2052206816C50644808 @default.
- W2052206816 hasConceptScore W2052206816C58166 @default.
- W2052206816 hasConceptScore W2052206816C61797465 @default.
- W2052206816 hasConceptScore W2052206816C62520636 @default.
- W2052206816 hasLocation W20522068161 @default.
- W2052206816 hasOpenAccess W2052206816 @default.
- W2052206816 hasPrimaryLocation W20522068161 @default.
- W2052206816 hasRelatedWork W2095503193 @default.
- W2052206816 hasRelatedWork W2508060345 @default.
- W2052206816 hasRelatedWork W2980485567 @default.
- W2052206816 hasRelatedWork W3025444948 @default.
- W2052206816 hasRelatedWork W3119865579 @default.
- W2052206816 hasRelatedWork W4235645554 @default.
- W2052206816 hasRelatedWork W4244255161 @default.
- W2052206816 hasRelatedWork W4285104253 @default.
- W2052206816 hasRelatedWork W4319588712 @default.
- W2052206816 hasRelatedWork W4380684038 @default.
- W2052206816 hasVolume "14" @default.
- W2052206816 isParatext "false" @default.
- W2052206816 isRetracted "false" @default.
- W2052206816 magId "2052206816" @default.
- W2052206816 workType "article" @default.