Matches in SemOpenAlex for { <https://semopenalex.org/work/W2052312849> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2052312849 abstract "In the design and testing of gas compressors, the correct determination of the thermodynamic properties of the gas. such as enthalpy, entropy and density from pressure, temperature and composition, plays an important role. Due to the wide range of conditions encountered, pressure, specific volume and temperature (p-v-T) equations of state (EOS) and ideal gas heat capacities, along with measured data, are used to determine the isentropic efficiency of a compressor configuration and to model the actual behavior of real gases and compressors. There are many possible model choices. The final selection should depend on the applicability of the EOS to the gas and the temperature dependence of the heat capacities, as well as the particular process of interest along with the range of pressures and temperatures encountered. This paper compares the thermodynamic properties from five commonly used equations in the gas compressor industry: the Redlich-Kwong (RK), Redlich-Kwong-Soave (RKS), Peog-Robinson (PR), Benedict-Webb-Rubin-Starling (BWRS), and Lee-Kesler-Plocker (LKP) models. It also compares them with a high accuracy EOS for methane from Wagner and Setzmann in the common range for gas compressors. The validity of a linear temperature dependence for ideal gas heat capacities is also evaluated. The objective was to determine if the models give significant differences in their predicted efficiencies. It was found that different EOS gave somewhat different enthalpy changes for methane, ethane and nitrogen for real compressions. This appeared to be connected to the different densities given by the models. Interestingly, the isentropic enthalpy changes are quite similar, suggesting that the effect is canceled out when two properties are involved. However, since the efficiency is the ratio of isentropic enthalpy change to actual enthalpy change, the EOS yield different efficiencies. These differences are on the same order as the typical tolerances allowed for prediction and testing of industrial gas compressors (3 to 5%) and comparisons with the highly accurate equation of state for pure methane from Wagner and Setzmann (1991) showed similar differences. Commonly, the ideal gas heat capacity is assumed linear in temperature from 10 to 150°C (50 to 300°F). Comparison of this form with a quadratic expression from the literature and the highly accurate equation of Wagner and Setzmann for methane, showed insignificant differences among the methods for temperatures up to 600°K (1080°R)." @default.
- W2052312849 created "2016-06-24" @default.
- W2052312849 creator A5002383556 @default.
- W2052312849 creator A5038262727 @default.
- W2052312849 creator A5050823024 @default.
- W2052312849 date "1999-06-07" @default.
- W2052312849 modified "2023-10-16" @default.
- W2052312849 title "Equations of State for Gas Compressor Design and Testing" @default.
- W2052312849 doi "https://doi.org/10.1115/99-gt-012" @default.
- W2052312849 hasPublicationYear "1999" @default.
- W2052312849 type Work @default.
- W2052312849 sameAs 2052312849 @default.
- W2052312849 citedByCount "4" @default.
- W2052312849 countsByYear W20523128492017 @default.
- W2052312849 countsByYear W20523128492022 @default.
- W2052312849 crossrefType "proceedings-article" @default.
- W2052312849 hasAuthorship W2052312849A5002383556 @default.
- W2052312849 hasAuthorship W2052312849A5038262727 @default.
- W2052312849 hasAuthorship W2052312849A5050823024 @default.
- W2052312849 hasConcept C121332964 @default.
- W2052312849 hasConcept C131097465 @default.
- W2052312849 hasConcept C167191414 @default.
- W2052312849 hasConcept C172959903 @default.
- W2052312849 hasConcept C178790620 @default.
- W2052312849 hasConcept C185592680 @default.
- W2052312849 hasConcept C20556612 @default.
- W2052312849 hasConcept C30342001 @default.
- W2052312849 hasConcept C3288061 @default.
- W2052312849 hasConcept C516920438 @default.
- W2052312849 hasConcept C53810900 @default.
- W2052312849 hasConcept C8244237 @default.
- W2052312849 hasConcept C97355855 @default.
- W2052312849 hasConceptScore W2052312849C121332964 @default.
- W2052312849 hasConceptScore W2052312849C131097465 @default.
- W2052312849 hasConceptScore W2052312849C167191414 @default.
- W2052312849 hasConceptScore W2052312849C172959903 @default.
- W2052312849 hasConceptScore W2052312849C178790620 @default.
- W2052312849 hasConceptScore W2052312849C185592680 @default.
- W2052312849 hasConceptScore W2052312849C20556612 @default.
- W2052312849 hasConceptScore W2052312849C30342001 @default.
- W2052312849 hasConceptScore W2052312849C3288061 @default.
- W2052312849 hasConceptScore W2052312849C516920438 @default.
- W2052312849 hasConceptScore W2052312849C53810900 @default.
- W2052312849 hasConceptScore W2052312849C8244237 @default.
- W2052312849 hasConceptScore W2052312849C97355855 @default.
- W2052312849 hasLocation W20523128491 @default.
- W2052312849 hasOpenAccess W2052312849 @default.
- W2052312849 hasPrimaryLocation W20523128491 @default.
- W2052312849 hasRelatedWork W1964453600 @default.
- W2052312849 hasRelatedWork W1986219319 @default.
- W2052312849 hasRelatedWork W2012037794 @default.
- W2052312849 hasRelatedWork W2029925561 @default.
- W2052312849 hasRelatedWork W2049351293 @default.
- W2052312849 hasRelatedWork W2052312849 @default.
- W2052312849 hasRelatedWork W2086418081 @default.
- W2052312849 hasRelatedWork W2312704160 @default.
- W2052312849 hasRelatedWork W2514969703 @default.
- W2052312849 hasRelatedWork W2802107277 @default.
- W2052312849 isParatext "false" @default.
- W2052312849 isRetracted "false" @default.
- W2052312849 magId "2052312849" @default.
- W2052312849 workType "article" @default.