Matches in SemOpenAlex for { <https://semopenalex.org/work/W2052336637> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2052336637 endingPage "26" @default.
- W2052336637 startingPage "16" @default.
- W2052336637 abstract "SummaryThe analysis of morphological diversity frequently relies on the use of multivariate methods for characterizing biological shape. However, many of these methods are intolerant of missing data, which can limit the use of rare taxa and hinder the study of broad patterns of ecological diversity and morphological evolution. This study applied a mutli-data set approach to compare variation in missing data estimation and its effect on geometric morphometric analyses across taxonomically variable groups, landmark position and sample sizes.Missing morphometric landmark data were simulated from five real, complete data sets, including modern fish, primates and extinct theropod dinosaurs. Missing landmarks were then estimated using several standard approaches and a geometric-morphometric-specific method. The accuracy of missing data estimation was determined for each estimation method, landmark position and morphological data set. Procrustes superimposition was used to compare the eigenvectors and principal component scores of a geometric morphometric analysis of the original landmark data, to data sets with A) missing values estimated, or B) simulated incomplete specimens excluded, for varying levels of specimens incompleteness and sample sizes.Standard estimation techniques were more reliable estimators and had lower impacts on morphometric analysis compared with a geometric-morphometric-specific estimator. For most data sets and estimation techniques, estimating missing data produced a better fit to the structure of the original data than exclusion of incomplete specimens, and this was maintained even at considerably reduced sample sizes. The impact of missing data on geometric morphometric analysis was disproportionately affected by the most fragmentary specimens.Missing data estimation was influenced by variability of specific anatomical features and may be improved by a better understanding of shape variation present in a data set. Our results suggest that the inclusion of incomplete specimens through the use of effective missing data estimators better reflects the patterns of shape variation within a data set than using only complete specimens; however, the effectiveness of missing data estimation can be maximized by excluding only the most incomplete specimens. It is advised that missing data estimators be evaluated for each data set and landmark independently, as the effectiveness of estimators can vary strongly and unpredictably between different taxa and structures." @default.
- W2052336637 created "2016-06-24" @default.
- W2052336637 creator A5001380940 @default.
- W2052336637 creator A5006976231 @default.
- W2052336637 date "2013-12-10" @default.
- W2052336637 modified "2023-10-16" @default.
- W2052336637 title "Incomplete specimens in geometric morphometric analyses" @default.
- W2052336637 cites W1528229609 @default.
- W2052336637 cites W1538212908 @default.
- W2052336637 cites W1593596425 @default.
- W2052336637 cites W1908011449 @default.
- W2052336637 cites W1964791943 @default.
- W2052336637 cites W1968716653 @default.
- W2052336637 cites W1973783131 @default.
- W2052336637 cites W1984407408 @default.
- W2052336637 cites W1991821268 @default.
- W2052336637 cites W1995980194 @default.
- W2052336637 cites W2004938597 @default.
- W2052336637 cites W2012841587 @default.
- W2052336637 cites W2025734273 @default.
- W2052336637 cites W2059363938 @default.
- W2052336637 cites W2067936177 @default.
- W2052336637 cites W2099172632 @default.
- W2052336637 cites W2103420996 @default.
- W2052336637 cites W2109875024 @default.
- W2052336637 cites W2110731127 @default.
- W2052336637 cites W2112257491 @default.
- W2052336637 cites W2118502261 @default.
- W2052336637 cites W2123317467 @default.
- W2052336637 cites W2133447017 @default.
- W2052336637 cites W2139079346 @default.
- W2052336637 cites W2140747636 @default.
- W2052336637 cites W2148654450 @default.
- W2052336637 cites W2149729335 @default.
- W2052336637 cites W2150505176 @default.
- W2052336637 cites W2152933358 @default.
- W2052336637 cites W2158571933 @default.
- W2052336637 cites W2166029961 @default.
- W2052336637 cites W2167864200 @default.
- W2052336637 cites W2167942713 @default.
- W2052336637 cites W2168053569 @default.
- W2052336637 cites W2168709745 @default.
- W2052336637 cites W2169479912 @default.
- W2052336637 cites W2171118759 @default.
- W2052336637 cites W2178329765 @default.
- W2052336637 cites W2179723217 @default.
- W2052336637 cites W2180357446 @default.
- W2052336637 cites W4300187280 @default.
- W2052336637 doi "https://doi.org/10.1111/2041-210x.12128" @default.
- W2052336637 hasPublicationYear "2013" @default.
- W2052336637 type Work @default.
- W2052336637 sameAs 2052336637 @default.
- W2052336637 citedByCount "57" @default.
- W2052336637 countsByYear W20523366372015 @default.
- W2052336637 countsByYear W20523366372016 @default.
- W2052336637 countsByYear W20523366372017 @default.
- W2052336637 countsByYear W20523366372018 @default.
- W2052336637 countsByYear W20523366372019 @default.
- W2052336637 countsByYear W20523366372020 @default.
- W2052336637 countsByYear W20523366372021 @default.
- W2052336637 countsByYear W20523366372022 @default.
- W2052336637 countsByYear W20523366372023 @default.
- W2052336637 crossrefType "journal-article" @default.
- W2052336637 hasAuthorship W2052336637A5001380940 @default.
- W2052336637 hasAuthorship W2052336637A5006976231 @default.
- W2052336637 hasBestOaLocation W20523366371 @default.
- W2052336637 hasConcept C205649164 @default.
- W2052336637 hasConcept C33511622 @default.
- W2052336637 hasConcept C33923547 @default.
- W2052336637 hasConcept C78458016 @default.
- W2052336637 hasConcept C86803240 @default.
- W2052336637 hasConcept C90856448 @default.
- W2052336637 hasConceptScore W2052336637C205649164 @default.
- W2052336637 hasConceptScore W2052336637C33511622 @default.
- W2052336637 hasConceptScore W2052336637C33923547 @default.
- W2052336637 hasConceptScore W2052336637C78458016 @default.
- W2052336637 hasConceptScore W2052336637C86803240 @default.
- W2052336637 hasConceptScore W2052336637C90856448 @default.
- W2052336637 hasIssue "1" @default.
- W2052336637 hasLocation W20523366371 @default.
- W2052336637 hasOpenAccess W2052336637 @default.
- W2052336637 hasPrimaryLocation W20523366371 @default.
- W2052336637 hasRelatedWork W2035068580 @default.
- W2052336637 hasRelatedWork W2044499740 @default.
- W2052336637 hasRelatedWork W2061542922 @default.
- W2052336637 hasRelatedWork W2064901328 @default.
- W2052336637 hasRelatedWork W2066020728 @default.
- W2052336637 hasRelatedWork W2096678084 @default.
- W2052336637 hasRelatedWork W2150422270 @default.
- W2052336637 hasRelatedWork W2190176143 @default.
- W2052336637 hasRelatedWork W2950415208 @default.
- W2052336637 hasRelatedWork W4236656443 @default.
- W2052336637 hasVolume "5" @default.
- W2052336637 isParatext "false" @default.
- W2052336637 isRetracted "false" @default.
- W2052336637 magId "2052336637" @default.
- W2052336637 workType "article" @default.