Matches in SemOpenAlex for { <https://semopenalex.org/work/W2052344770> ?p ?o ?g. }
- W2052344770 endingPage "80" @default.
- W2052344770 startingPage "69" @default.
- W2052344770 abstract "Pseudotachylytes and two distinct types of cataclasite in the Otago Schist at Tucker Hill, South Island, New Zealand, provide evidence for both seismic slip and aseismic creep on a normal fault zone during regional crustal extension in late Cretaceous time. Regional geologic evidence suggests that the fault had its present low-angle dip (ca. 10°) at the time it was active. ‘Type A’ cataclasites, presumably aseismic, can be recognized by bi-fractal grain size distributions, monomict composition, angular clasts of uniform textural maturity, and a crude fabric defined by oriented grains and transgranular fractures. ‘Type B’ cataclasites, possibly cosesimic, have characteristics consistent with fluidized grain flow, including heterogeneous clast shapes and types, a bimodal grain size distribution, intrusive relationships with other rocks, and the absence of any fabric or transecting fractures. Pseudotachylyte, which occurs as fault veins, injection veins and more complex types of intrusive structures, consistently cuts across and invades Type A cataclasites but is both intrusive into and included as clasts in Type B cataclasites. These relationships are consistent with a fault evolution model in which the development of a damage zone through aseismic cataclasis (Type A) facilitates the formation of pseudotachylyte in a subsequent seismic event by providing a permeable matrix through which fluids can drain in the early stages of slip, thereby maintaining frictional contact between rock surfaces. The formation of pseudotachylyte, in turn, may seal the fault zone and lead to thermal pressurization in a later seismic cycle, forming fluidized (Type B) cataclasites. Seismic slip on the low-angle normal fault zone at Tucker Hill may have occurred by two distinct modes of dynamic weakening — melt lubrication and thermal pressurization — in successive seismic events. Although there is a perception among geologists that pseudotachylyte is most likely to form in intact, crystalline rocks, geophysical models of fault zones clearly demonstrate that pseudotachylyte formation is actually suppressed in low-permeability rock because any fluids present would be unable to escape the fault zone and thermal pressurization would rapidly reduce frictional resistance. The paradigmatic occurrences of pseudotachylyte in otherwise pristine crystalline rocks probably represent somewhat exceptional circumstances (single rupture events at very high effective stress in dry rock). Coseismic frictional melts may actually be more common in hydrated rocks like the schist at Tucker Hill, but harder to recognize and also vulnerable to overprinting as a fault zone matures. In such rocks, pseudotachylyte may represent an intermediate stage in the evolution of a fault zone, the period between the formation of a high-permeability damage zone and the development of a low-permeability fault core." @default.
- W2052344770 created "2016-06-24" @default.
- W2052344770 creator A5080285130 @default.
- W2052344770 date "2010-07-01" @default.
- W2052344770 modified "2023-09-27" @default.
- W2052344770 title "Rethinking conditions necessary for pseudotachylyte formation: Observations from the Otago schists, South Island, New Zealand" @default.
- W2052344770 cites W169725641 @default.
- W2052344770 cites W1968738454 @default.
- W2052344770 cites W1969388047 @default.
- W2052344770 cites W1972382121 @default.
- W2052344770 cites W1975252419 @default.
- W2052344770 cites W1976647390 @default.
- W2052344770 cites W1980824982 @default.
- W2052344770 cites W1984851692 @default.
- W2052344770 cites W1999975101 @default.
- W2052344770 cites W2001661248 @default.
- W2052344770 cites W2008753090 @default.
- W2052344770 cites W2010182219 @default.
- W2052344770 cites W2012734695 @default.
- W2052344770 cites W2016435379 @default.
- W2052344770 cites W2030490791 @default.
- W2052344770 cites W2032565676 @default.
- W2052344770 cites W2033229237 @default.
- W2052344770 cites W2035550149 @default.
- W2052344770 cites W2038420677 @default.
- W2052344770 cites W2038918440 @default.
- W2052344770 cites W2042520007 @default.
- W2052344770 cites W2043658900 @default.
- W2052344770 cites W2047870820 @default.
- W2052344770 cites W2048238277 @default.
- W2052344770 cites W2049386485 @default.
- W2052344770 cites W2049508547 @default.
- W2052344770 cites W2051425762 @default.
- W2052344770 cites W2054867889 @default.
- W2052344770 cites W2060556510 @default.
- W2052344770 cites W2061976920 @default.
- W2052344770 cites W2062461905 @default.
- W2052344770 cites W2069168481 @default.
- W2052344770 cites W2071474049 @default.
- W2052344770 cites W2072376551 @default.
- W2052344770 cites W2076190086 @default.
- W2052344770 cites W2080195218 @default.
- W2052344770 cites W2080610251 @default.
- W2052344770 cites W2081032963 @default.
- W2052344770 cites W2085045025 @default.
- W2052344770 cites W2086249868 @default.
- W2052344770 cites W2112214252 @default.
- W2052344770 cites W2117221055 @default.
- W2052344770 cites W2136990385 @default.
- W2052344770 cites W2142683638 @default.
- W2052344770 cites W2143797369 @default.
- W2052344770 cites W2145984304 @default.
- W2052344770 cites W2146165228 @default.
- W2052344770 cites W2147474159 @default.
- W2052344770 cites W2148872613 @default.
- W2052344770 cites W2152942936 @default.
- W2052344770 cites W2154483101 @default.
- W2052344770 cites W2155957695 @default.
- W2052344770 cites W2156245371 @default.
- W2052344770 cites W2156446721 @default.
- W2052344770 cites W2164643951 @default.
- W2052344770 cites W2171816060 @default.
- W2052344770 cites W4252832327 @default.
- W2052344770 doi "https://doi.org/10.1016/j.tecto.2010.04.028" @default.
- W2052344770 hasPublicationYear "2010" @default.
- W2052344770 type Work @default.
- W2052344770 sameAs 2052344770 @default.
- W2052344770 citedByCount "18" @default.
- W2052344770 countsByYear W20523447702012 @default.
- W2052344770 countsByYear W20523447702013 @default.
- W2052344770 countsByYear W20523447702014 @default.
- W2052344770 countsByYear W20523447702015 @default.
- W2052344770 countsByYear W20523447702016 @default.
- W2052344770 countsByYear W20523447702018 @default.
- W2052344770 countsByYear W20523447702019 @default.
- W2052344770 countsByYear W20523447702020 @default.
- W2052344770 countsByYear W20523447702021 @default.
- W2052344770 countsByYear W20523447702022 @default.
- W2052344770 countsByYear W20523447702023 @default.
- W2052344770 crossrefType "journal-article" @default.
- W2052344770 hasAuthorship W2052344770A5080285130 @default.
- W2052344770 hasConcept C101139013 @default.
- W2052344770 hasConcept C121332964 @default.
- W2052344770 hasConcept C127313418 @default.
- W2052344770 hasConcept C138170599 @default.
- W2052344770 hasConcept C164421858 @default.
- W2052344770 hasConcept C165205528 @default.
- W2052344770 hasConcept C17409809 @default.
- W2052344770 hasConcept C175551986 @default.
- W2052344770 hasConcept C195268267 @default.
- W2052344770 hasConcept C26687426 @default.
- W2052344770 hasConcept C5900021 @default.
- W2052344770 hasConcept C6494504 @default.
- W2052344770 hasConcept C97355855 @default.
- W2052344770 hasConceptScore W2052344770C101139013 @default.
- W2052344770 hasConceptScore W2052344770C121332964 @default.
- W2052344770 hasConceptScore W2052344770C127313418 @default.
- W2052344770 hasConceptScore W2052344770C138170599 @default.