Matches in SemOpenAlex for { <https://semopenalex.org/work/W2052553669> ?p ?o ?g. }
- W2052553669 endingPage "2898" @default.
- W2052553669 startingPage "2888" @default.
- W2052553669 abstract "•Single-photon responses were recorded in primate ganglion cells•A novel coincidence detection mechanism was found in the inner retina•On parasol cells provide a low noise and thresholded readout of rod signals•Off parasol cells provide a noisy but linear readout of rod signals BackgroundVision in starlight relies on our ability to detect single absorbed photons. Indeed, the sensitivity of dark-adapted vision approaches limits set by the quantal nature of light. This sensitivity requires neural mechanisms that selectively transmit quantal responses and suppress noise. Such mechanisms face an inevitable tradeoff because signal and noise cannot be perfectly separated, and rejecting noise also means rejecting signal.ResultsWe report measurements of single-photon responses in the output signals of the primate retina. We find that visual signals arising from a few absorbed photons are read out fundamentally differently by primate On and Off parasol ganglion cells, key retinal output neurons. Off parasol cells respond linearly to near-threshold flashes, retaining sensitivity to each absorbed photon but maintaining a high level of noise. On parasol cells respond nonlinearly due to thresholding of their excitatory synaptic inputs. This nonlinearity reduces neural noise but also limits information about single-photon absorptions.ConclusionsThe long-standing idea that information about each photon absorption is available for behavior at the sensitivity limit of vision is not universally true across retinal outputs. More generally, our work shows how a neural circuit balances the competing needs for sensitivity and noise rejection. Vision in starlight relies on our ability to detect single absorbed photons. Indeed, the sensitivity of dark-adapted vision approaches limits set by the quantal nature of light. This sensitivity requires neural mechanisms that selectively transmit quantal responses and suppress noise. Such mechanisms face an inevitable tradeoff because signal and noise cannot be perfectly separated, and rejecting noise also means rejecting signal. We report measurements of single-photon responses in the output signals of the primate retina. We find that visual signals arising from a few absorbed photons are read out fundamentally differently by primate On and Off parasol ganglion cells, key retinal output neurons. Off parasol cells respond linearly to near-threshold flashes, retaining sensitivity to each absorbed photon but maintaining a high level of noise. On parasol cells respond nonlinearly due to thresholding of their excitatory synaptic inputs. This nonlinearity reduces neural noise but also limits information about single-photon absorptions. The long-standing idea that information about each photon absorption is available for behavior at the sensitivity limit of vision is not universally true across retinal outputs. More generally, our work shows how a neural circuit balances the competing needs for sensitivity and noise rejection." @default.
- W2052553669 created "2016-06-24" @default.
- W2052553669 creator A5035043576 @default.
- W2052553669 creator A5068675376 @default.
- W2052553669 date "2014-12-01" @default.
- W2052553669 modified "2023-10-14" @default.
- W2052553669 title "Coincidence Detection of Single-Photon Responses in the Inner Retina at the Sensitivity Limit of Vision" @default.
- W2052553669 cites W1544860128 @default.
- W2052553669 cites W1590951841 @default.
- W2052553669 cites W1748348499 @default.
- W2052553669 cites W1766518745 @default.
- W2052553669 cites W1770292374 @default.
- W2052553669 cites W1908448863 @default.
- W2052553669 cites W1963858199 @default.
- W2052553669 cites W1965666655 @default.
- W2052553669 cites W1976473564 @default.
- W2052553669 cites W1983056456 @default.
- W2052553669 cites W1985424395 @default.
- W2052553669 cites W1990782412 @default.
- W2052553669 cites W2001472711 @default.
- W2052553669 cites W2009866472 @default.
- W2052553669 cites W2024869758 @default.
- W2052553669 cites W2027541804 @default.
- W2052553669 cites W2029545261 @default.
- W2052553669 cites W2047946144 @default.
- W2052553669 cites W2053860264 @default.
- W2052553669 cites W2064129017 @default.
- W2052553669 cites W2064604304 @default.
- W2052553669 cites W2066358530 @default.
- W2052553669 cites W2067328729 @default.
- W2052553669 cites W2074419912 @default.
- W2052553669 cites W2082631179 @default.
- W2052553669 cites W2099616257 @default.
- W2052553669 cites W2103185622 @default.
- W2052553669 cites W2110192752 @default.
- W2052553669 cites W2113032894 @default.
- W2052553669 cites W2116534762 @default.
- W2052553669 cites W2119474636 @default.
- W2052553669 cites W2120989812 @default.
- W2052553669 cites W2124401425 @default.
- W2052553669 cites W2128306725 @default.
- W2052553669 cites W2148658703 @default.
- W2052553669 cites W2149904439 @default.
- W2052553669 cites W2152812019 @default.
- W2052553669 cites W2158808108 @default.
- W2052553669 cites W2172200071 @default.
- W2052553669 cites W2404659340 @default.
- W2052553669 doi "https://doi.org/10.1016/j.cub.2014.10.028" @default.
- W2052553669 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4269560" @default.
- W2052553669 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25454583" @default.
- W2052553669 hasPublicationYear "2014" @default.
- W2052553669 type Work @default.
- W2052553669 sameAs 2052553669 @default.
- W2052553669 citedByCount "40" @default.
- W2052553669 countsByYear W20525536692014 @default.
- W2052553669 countsByYear W20525536692015 @default.
- W2052553669 countsByYear W20525536692016 @default.
- W2052553669 countsByYear W20525536692017 @default.
- W2052553669 countsByYear W20525536692018 @default.
- W2052553669 countsByYear W20525536692019 @default.
- W2052553669 countsByYear W20525536692020 @default.
- W2052553669 countsByYear W20525536692021 @default.
- W2052553669 countsByYear W20525536692022 @default.
- W2052553669 crossrefType "journal-article" @default.
- W2052553669 hasAuthorship W2052553669A5035043576 @default.
- W2052553669 hasAuthorship W2052553669A5068675376 @default.
- W2052553669 hasBestOaLocation W20525536691 @default.
- W2052553669 hasConcept C115961682 @default.
- W2052553669 hasConcept C120665830 @default.
- W2052553669 hasConcept C121332964 @default.
- W2052553669 hasConcept C127413603 @default.
- W2052553669 hasConcept C1276947 @default.
- W2052553669 hasConcept C142724271 @default.
- W2052553669 hasConcept C150846664 @default.
- W2052553669 hasConcept C154945302 @default.
- W2052553669 hasConcept C159317903 @default.
- W2052553669 hasConcept C199360897 @default.
- W2052553669 hasConcept C204787440 @default.
- W2052553669 hasConcept C207579572 @default.
- W2052553669 hasConcept C21200559 @default.
- W2052553669 hasConcept C24326235 @default.
- W2052553669 hasConcept C2776112769 @default.
- W2052553669 hasConcept C2777093970 @default.
- W2052553669 hasConcept C2779832538 @default.
- W2052553669 hasConcept C2779843651 @default.
- W2052553669 hasConcept C41008148 @default.
- W2052553669 hasConcept C71924100 @default.
- W2052553669 hasConcept C99498987 @default.
- W2052553669 hasConceptScore W2052553669C115961682 @default.
- W2052553669 hasConceptScore W2052553669C120665830 @default.
- W2052553669 hasConceptScore W2052553669C121332964 @default.
- W2052553669 hasConceptScore W2052553669C127413603 @default.
- W2052553669 hasConceptScore W2052553669C1276947 @default.
- W2052553669 hasConceptScore W2052553669C142724271 @default.
- W2052553669 hasConceptScore W2052553669C150846664 @default.
- W2052553669 hasConceptScore W2052553669C154945302 @default.
- W2052553669 hasConceptScore W2052553669C159317903 @default.
- W2052553669 hasConceptScore W2052553669C199360897 @default.