Matches in SemOpenAlex for { <https://semopenalex.org/work/W2052850567> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2052850567 endingPage "3130" @default.
- W2052850567 startingPage "3095" @default.
- W2052850567 abstract "A graph is Hamiltonian if it contains a cycle which passes through every vertex of the graph exactly once. A classical theorem of Dirac from 1952 asserts that every graph on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> vertices with minimum degree at least <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n slash 2> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>n/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is Hamiltonian. We refer to such graphs as Dirac graphs. In this paper we extend Dirac’s theorem in two directions and show that Dirac graphs are robustly Hamiltonian in a very strong sense. First, we consider a random subgraph of a Dirac graph obtained by taking each edge independently with probability <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and prove that there exists a constant <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C> <mml:semantics> <mml:mi>C</mml:mi> <mml:annotation encoding=application/x-tex>C</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p greater-than-or-equal-to upper C log n slash n> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mi>C</mml:mi> <mml:mi>log</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>n</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>p ge C log n / n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then a.a.s. the resulting random subgraph is still Hamiltonian. Second, we prove that if a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis 1 colon b right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>:</mml:mo> <mml:mi>b</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(1:b)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Maker-Breaker game is played on a Dirac graph, then Maker can construct a Hamiltonian subgraph as long as the bias <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=b> <mml:semantics> <mml:mi>b</mml:mi> <mml:annotation encoding=application/x-tex>b</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is at most <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=c n slash log n> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mi>n</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>log</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>cn /log n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some absolute constant <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=c greater-than 0> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>c > 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Both of these results are tight up to a constant factor, and are proved under one general framework." @default.
- W2052850567 created "2016-06-24" @default.
- W2052850567 creator A5008556299 @default.
- W2052850567 creator A5022514157 @default.
- W2052850567 creator A5066741544 @default.
- W2052850567 date "2014-02-10" @default.
- W2052850567 modified "2023-09-30" @default.
- W2052850567 title "Robust Hamiltonicity of Dirac graphs" @default.
- W2052850567 cites W1965652541 @default.
- W2052850567 cites W1976052016 @default.
- W2052850567 cites W1997152363 @default.
- W2052850567 cites W2008120342 @default.
- W2052850567 cites W2009232680 @default.
- W2052850567 cites W2017776863 @default.
- W2052850567 cites W2045530818 @default.
- W2052850567 cites W2062589906 @default.
- W2052850567 cites W2079376502 @default.
- W2052850567 cites W2085719367 @default.
- W2052850567 cites W2086330117 @default.
- W2052850567 cites W2122689704 @default.
- W2052850567 cites W2126648306 @default.
- W2052850567 cites W2478722229 @default.
- W2052850567 cites W2912057363 @default.
- W2052850567 cites W2953347513 @default.
- W2052850567 cites W2964319221 @default.
- W2052850567 cites W2977322974 @default.
- W2052850567 cites W3100625388 @default.
- W2052850567 cites W4230867389 @default.
- W2052850567 cites W4298414065 @default.
- W2052850567 cites W71466766 @default.
- W2052850567 doi "https://doi.org/10.1090/s0002-9947-2014-05963-1" @default.
- W2052850567 hasPublicationYear "2014" @default.
- W2052850567 type Work @default.
- W2052850567 sameAs 2052850567 @default.
- W2052850567 citedByCount "37" @default.
- W2052850567 countsByYear W20528505672012 @default.
- W2052850567 countsByYear W20528505672014 @default.
- W2052850567 countsByYear W20528505672015 @default.
- W2052850567 countsByYear W20528505672016 @default.
- W2052850567 countsByYear W20528505672017 @default.
- W2052850567 countsByYear W20528505672018 @default.
- W2052850567 countsByYear W20528505672019 @default.
- W2052850567 countsByYear W20528505672020 @default.
- W2052850567 countsByYear W20528505672021 @default.
- W2052850567 countsByYear W20528505672022 @default.
- W2052850567 countsByYear W20528505672023 @default.
- W2052850567 crossrefType "journal-article" @default.
- W2052850567 hasAuthorship W2052850567A5008556299 @default.
- W2052850567 hasAuthorship W2052850567A5022514157 @default.
- W2052850567 hasAuthorship W2052850567A5066741544 @default.
- W2052850567 hasBestOaLocation W20528505671 @default.
- W2052850567 hasConcept C11413529 @default.
- W2052850567 hasConcept C114614502 @default.
- W2052850567 hasConcept C154945302 @default.
- W2052850567 hasConcept C2776321320 @default.
- W2052850567 hasConcept C33923547 @default.
- W2052850567 hasConcept C41008148 @default.
- W2052850567 hasConcept C77088390 @default.
- W2052850567 hasConceptScore W2052850567C11413529 @default.
- W2052850567 hasConceptScore W2052850567C114614502 @default.
- W2052850567 hasConceptScore W2052850567C154945302 @default.
- W2052850567 hasConceptScore W2052850567C2776321320 @default.
- W2052850567 hasConceptScore W2052850567C33923547 @default.
- W2052850567 hasConceptScore W2052850567C41008148 @default.
- W2052850567 hasConceptScore W2052850567C77088390 @default.
- W2052850567 hasIssue "6" @default.
- W2052850567 hasLocation W20528505671 @default.
- W2052850567 hasLocation W20528505672 @default.
- W2052850567 hasLocation W20528505673 @default.
- W2052850567 hasOpenAccess W2052850567 @default.
- W2052850567 hasPrimaryLocation W20528505671 @default.
- W2052850567 hasRelatedWork W1529400504 @default.
- W2052850567 hasRelatedWork W1892467659 @default.
- W2052850567 hasRelatedWork W1978042415 @default.
- W2052850567 hasRelatedWork W2143954309 @default.
- W2052850567 hasRelatedWork W2333703843 @default.
- W2052850567 hasRelatedWork W2386767533 @default.
- W2052850567 hasRelatedWork W2394022102 @default.
- W2052850567 hasRelatedWork W2469937864 @default.
- W2052850567 hasRelatedWork W2808586768 @default.
- W2052850567 hasRelatedWork W2998403542 @default.
- W2052850567 hasVolume "366" @default.
- W2052850567 isParatext "false" @default.
- W2052850567 isRetracted "false" @default.
- W2052850567 magId "2052850567" @default.
- W2052850567 workType "article" @default.