Matches in SemOpenAlex for { <https://semopenalex.org/work/W2052897788> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2052897788 abstract "Automated systems for understanding low resolution images of display boards are facilitating several new applications such as blind assistants, tour guide systems, location aware systems and many more. Script identification at character/word level is one of the very important pre-processing steps for development of such systems prior to further image analysis. In this paper, a new fuzzy based approach for word level script identification of text in low resolution images of display boards is presented. The proposed methodology uses horizontal run statistics and wavelet features for distinguishing 5 Indian scripts namely; Hindi, Kannada, English, Malyalam and Tamil. The method works in two phases; In the first phase, the wavelet transform based texture features such as zone wise wavelet energy features, vertical run statistical features of wavelet coefficients and wavelet log mean deviation features of decomposed energy bands at 2 levels are obtained from training word images and crisp sets are constructed, one for each script/language under study. The second phase is testing, in which test word image is processed to obtain horizontal run statistics to determine whether it belongs to Hindi script. Otherwise, the word image is processed to obtain a crisp vector. The degree of belongingness of crisp vector with each candidate object in the crisp sets is determined using newly devised fuzzy membership function. Further, fuzzy inference scheme is used to identify the script of the test word image. The proposed method is robust and insensitive to the variations in size and style of font, number of characters, thickness and spacing between characters, noise, and other degradations. The proposed method achieves an overall script identification accuracy of 94.33% and individual identification accuracy of 100% for Hindi Script, 98.67% for Kannada Script, 100% for English, 89% for Malyalam and 84% for Tamil Script." @default.
- W2052897788 created "2016-06-24" @default.
- W2052897788 creator A5076349407 @default.
- W2052897788 creator A5085175147 @default.
- W2052897788 date "2013-08-01" @default.
- W2052897788 modified "2023-09-25" @default.
- W2052897788 title "A fuzzy approach for word level script identification of text in low resolution display board images using wavelet features" @default.
- W2052897788 cites W1566248475 @default.
- W2052897788 cites W2004559293 @default.
- W2052897788 cites W2012714714 @default.
- W2052897788 cites W2032335695 @default.
- W2052897788 cites W2034458753 @default.
- W2052897788 cites W2041606757 @default.
- W2052897788 cites W2063133970 @default.
- W2052897788 cites W2073953856 @default.
- W2052897788 cites W2082551154 @default.
- W2052897788 cites W2098134779 @default.
- W2052897788 cites W2100631314 @default.
- W2052897788 cites W2102139201 @default.
- W2052897788 cites W2109364379 @default.
- W2052897788 cites W2119123874 @default.
- W2052897788 cites W2121548608 @default.
- W2052897788 cites W2121979056 @default.
- W2052897788 cites W2122782728 @default.
- W2052897788 cites W2126554140 @default.
- W2052897788 cites W2133059825 @default.
- W2052897788 cites W2136343973 @default.
- W2052897788 cites W2138704869 @default.
- W2052897788 cites W2143157063 @default.
- W2052897788 cites W2144421637 @default.
- W2052897788 cites W2145783145 @default.
- W2052897788 cites W2166083436 @default.
- W2052897788 cites W2167207203 @default.
- W2052897788 cites W2171295337 @default.
- W2052897788 cites W2295807700 @default.
- W2052897788 cites W2484215240 @default.
- W2052897788 cites W1991384361 @default.
- W2052897788 doi "https://doi.org/10.1109/icacci.2013.6637455" @default.
- W2052897788 hasPublicationYear "2013" @default.
- W2052897788 type Work @default.
- W2052897788 sameAs 2052897788 @default.
- W2052897788 citedByCount "9" @default.
- W2052897788 countsByYear W20528977882014 @default.
- W2052897788 countsByYear W20528977882017 @default.
- W2052897788 countsByYear W20528977882019 @default.
- W2052897788 countsByYear W20528977882020 @default.
- W2052897788 countsByYear W20528977882021 @default.
- W2052897788 crossrefType "proceedings-article" @default.
- W2052897788 hasAuthorship W2052897788A5076349407 @default.
- W2052897788 hasAuthorship W2052897788A5085175147 @default.
- W2052897788 hasConcept C153180895 @default.
- W2052897788 hasConcept C154945302 @default.
- W2052897788 hasConcept C204321447 @default.
- W2052897788 hasConcept C2524010 @default.
- W2052897788 hasConcept C31972630 @default.
- W2052897788 hasConcept C33923547 @default.
- W2052897788 hasConcept C41008148 @default.
- W2052897788 hasConcept C47432892 @default.
- W2052897788 hasConcept C58166 @default.
- W2052897788 hasConcept C90805587 @default.
- W2052897788 hasConceptScore W2052897788C153180895 @default.
- W2052897788 hasConceptScore W2052897788C154945302 @default.
- W2052897788 hasConceptScore W2052897788C204321447 @default.
- W2052897788 hasConceptScore W2052897788C2524010 @default.
- W2052897788 hasConceptScore W2052897788C31972630 @default.
- W2052897788 hasConceptScore W2052897788C33923547 @default.
- W2052897788 hasConceptScore W2052897788C41008148 @default.
- W2052897788 hasConceptScore W2052897788C47432892 @default.
- W2052897788 hasConceptScore W2052897788C58166 @default.
- W2052897788 hasConceptScore W2052897788C90805587 @default.
- W2052897788 hasLocation W20528977881 @default.
- W2052897788 hasOpenAccess W2052897788 @default.
- W2052897788 hasPrimaryLocation W20528977881 @default.
- W2052897788 hasRelatedWork W103843216 @default.
- W2052897788 hasRelatedWork W1480234225 @default.
- W2052897788 hasRelatedWork W1652056911 @default.
- W2052897788 hasRelatedWork W1980134021 @default.
- W2052897788 hasRelatedWork W1984037655 @default.
- W2052897788 hasRelatedWork W2005107396 @default.
- W2052897788 hasRelatedWork W2041606757 @default.
- W2052897788 hasRelatedWork W2044943596 @default.
- W2052897788 hasRelatedWork W2067004510 @default.
- W2052897788 hasRelatedWork W2116718444 @default.
- W2052897788 hasRelatedWork W2119123874 @default.
- W2052897788 hasRelatedWork W2138583092 @default.
- W2052897788 hasRelatedWork W2143842970 @default.
- W2052897788 hasRelatedWork W2164125420 @default.
- W2052897788 hasRelatedWork W2353294265 @default.
- W2052897788 hasRelatedWork W2370592796 @default.
- W2052897788 hasRelatedWork W2565894266 @default.
- W2052897788 hasRelatedWork W2565946401 @default.
- W2052897788 hasRelatedWork W2593493172 @default.
- W2052897788 hasRelatedWork W2110909944 @default.
- W2052897788 isParatext "false" @default.
- W2052897788 isRetracted "false" @default.
- W2052897788 magId "2052897788" @default.
- W2052897788 workType "article" @default.