Matches in SemOpenAlex for { <https://semopenalex.org/work/W2052946732> ?p ?o ?g. }
- W2052946732 endingPage "206" @default.
- W2052946732 startingPage "187" @default.
- W2052946732 abstract "To investigate effects of micrometeorite bombardment on optical spectra and composition of planetary and asteroid regoliths with low Fe contents, we irradiated samples of a Fe-poor plagioclase feldspar (andesine–labradorite) using a nanosecond pulsed laser. We measured reflectance spectra of irradiated and non-irradiated areas of the samples (pressed pellets) between 0.5 and 18 μm and performed SEM/EDS and TEM studies of the samples. Bulk FeO content of 0.72 wt.% in the samples is comparable, for example, to FeO content in silicates on the surface of Mercury, that was recently mapped by NASA’s MESSENGER mission and will be spectrally mapped by remote sensing instruments MERTIS and SYMBIO-SYS on board the ESA BepiColombo spacecraft. We also employed theoretical spectral modeling to characterize optical alteration caused by formation of nano- and submicrometer Fe0 inclusions within space-weathered surface layers and grain rims of a Fe-poor regolith. The laser-irradiated surface layer of plagioclase reveals significant melting, while reflectance spectra show mild darkening and reddening in the visible and near-infrared (VNIR). Our spectral modeling indicates that the optical changes observed in the visible require reduction of bulk FeO (including Fe from mineral impurities found in the sample) and formation of nanophase (np) Fe0 within the glassy surface layer. A vapor deposit, if present, is optically too thin to contribute to optical modification of the investigated samples or to cause space weathering-induced optical alteration of Fe-poor regoliths in general. Due to low thickness of vapor deposits, npFe0 formation in the latter can cause darkening and reddening only for a regolith with rather high bulk Fe content. Our calculations show that only a fraction of bulk Fe is likely to be converted to npFe0 in nanosecond laser irradiation experiments and probably in natural regolith layers modified by space weathering. The previously reported differences in response of different minerals to laser irradiation, and probably to space weathering-induced heating are likely controlled by their differences in electrical conductivities and melting points. For a given mineral grain, its susceptibility to melting/vaporization is also affected by electric conductivities of adjacent grains of other minerals in the regolith. Published nanosecond laser irradiation experiments simulate optical alteration of immature regoliths, since only the uppermost surface layer of an irradiated pellet is subject to heating. According to our calculations, if regolith particles due to impact-induced turnover are mantled with npFe0-bearing rims of the same thickness, then even low contents of Fe similar to our sample or Mercury’ surface can cause significant darkening and reddening, provided a melt layer, rather than a thin vapor deposit is involved into npFe0 formation. All spectral effects observed in the thermal infrared (TIR) after irradiation of our feldspar sample are likely to be associated with textural changes. We expect that mineralogical interpretation of the BepiColombo MERTIS infrared spectra of Mercury between 7 and 17 μm will be influenced mostly by textural effects (porosity, comminution) and impact glass formation rather than formation of npFe0 inclusions." @default.
- W2052946732 created "2016-06-24" @default.
- W2052946732 creator A5011126189 @default.
- W2052946732 creator A5038365814 @default.
- W2052946732 creator A5055026701 @default.
- W2052946732 creator A5063339701 @default.
- W2052946732 creator A5071074495 @default.
- W2052946732 creator A5076019525 @default.
- W2052946732 creator A5084041847 @default.
- W2052946732 creator A5087365830 @default.
- W2052946732 date "2014-06-01" @default.
- W2052946732 modified "2023-10-05" @default.
- W2052946732 title "Space weathering of silicate regoliths with various FeO contents: New insights from laser irradiation experiments and theoretical spectral simulations" @default.
- W2052946732 cites W1617188689 @default.
- W2052946732 cites W1861823774 @default.
- W2052946732 cites W1884222132 @default.
- W2052946732 cites W1936978295 @default.
- W2052946732 cites W1965426162 @default.
- W2052946732 cites W1965793139 @default.
- W2052946732 cites W1967304845 @default.
- W2052946732 cites W1969857988 @default.
- W2052946732 cites W1972811570 @default.
- W2052946732 cites W1975126357 @default.
- W2052946732 cites W1976800526 @default.
- W2052946732 cites W1979952643 @default.
- W2052946732 cites W1981318599 @default.
- W2052946732 cites W1981542101 @default.
- W2052946732 cites W1981586527 @default.
- W2052946732 cites W1984474391 @default.
- W2052946732 cites W1986023560 @default.
- W2052946732 cites W1986530877 @default.
- W2052946732 cites W1986561461 @default.
- W2052946732 cites W1988401769 @default.
- W2052946732 cites W1989193470 @default.
- W2052946732 cites W1990397201 @default.
- W2052946732 cites W1995818607 @default.
- W2052946732 cites W1996238175 @default.
- W2052946732 cites W1998638901 @default.
- W2052946732 cites W2000306299 @default.
- W2052946732 cites W2001650396 @default.
- W2052946732 cites W2011682277 @default.
- W2052946732 cites W2013446644 @default.
- W2052946732 cites W2015038411 @default.
- W2052946732 cites W2020842019 @default.
- W2052946732 cites W2021072354 @default.
- W2052946732 cites W2022308914 @default.
- W2052946732 cites W2033041943 @default.
- W2052946732 cites W2035872269 @default.
- W2052946732 cites W2038507558 @default.
- W2052946732 cites W2042466876 @default.
- W2052946732 cites W2044373563 @default.
- W2052946732 cites W2045276693 @default.
- W2052946732 cites W2045388333 @default.
- W2052946732 cites W2048401523 @default.
- W2052946732 cites W2052077515 @default.
- W2052946732 cites W2052901785 @default.
- W2052946732 cites W2066696084 @default.
- W2052946732 cites W2067134851 @default.
- W2052946732 cites W2067637679 @default.
- W2052946732 cites W2067702491 @default.
- W2052946732 cites W2068505887 @default.
- W2052946732 cites W2068996590 @default.
- W2052946732 cites W2072267955 @default.
- W2052946732 cites W2073167209 @default.
- W2052946732 cites W2073716624 @default.
- W2052946732 cites W2075177482 @default.
- W2052946732 cites W2078048901 @default.
- W2052946732 cites W2078435638 @default.
- W2052946732 cites W2078437484 @default.
- W2052946732 cites W2078815609 @default.
- W2052946732 cites W2083033374 @default.
- W2052946732 cites W2085009922 @default.
- W2052946732 cites W2087726589 @default.
- W2052946732 cites W2088640271 @default.
- W2052946732 cites W2090504047 @default.
- W2052946732 cites W2096105618 @default.
- W2052946732 cites W2098646056 @default.
- W2052946732 cites W2099912071 @default.
- W2052946732 cites W2104958444 @default.
- W2052946732 cites W2105040540 @default.
- W2052946732 cites W2106664657 @default.
- W2052946732 cites W2111631716 @default.
- W2052946732 cites W2114218369 @default.
- W2052946732 cites W2117166608 @default.
- W2052946732 cites W2124346987 @default.
- W2052946732 cites W2132549322 @default.
- W2052946732 cites W2132751016 @default.
- W2052946732 cites W2134257514 @default.
- W2052946732 cites W2136858939 @default.
- W2052946732 cites W2137014919 @default.
- W2052946732 cites W2141578665 @default.
- W2052946732 cites W2150721050 @default.
- W2052946732 cites W2157406996 @default.
- W2052946732 cites W2159989667 @default.
- W2052946732 cites W2330682136 @default.
- W2052946732 cites W4254628938 @default.
- W2052946732 doi "https://doi.org/10.1016/j.icarus.2014.03.021" @default.
- W2052946732 hasPublicationYear "2014" @default.