Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053106801> ?p ?o ?g. }
- W2053106801 endingPage "209" @default.
- W2053106801 startingPage "199" @default.
- W2053106801 abstract "In recent years, carbohydrate-processing enzymes have become the enzymes of choice in many applications thanks to their stereoselectivity and efficiency. This review presents recent developments in glycosidase-catalyzed synthesis via two complementary approaches: the use of wild-type enzymes with engineered substrates, and mutant glycosidases. Genetic engineering has recently produced glucuronyl synthases, an inverting xylosynthase and the first mutant endo-β-N-acetylglucosaminidase. A thorough selection of enzyme strains and aptly modified substrates have resulted in rare glycostructures, such as N-acetyl-β-galactosaminuronates, β1,4-linked mannosides and α1,4-linked galactosides. The efficient selection of mutant enzymes is facilitated by high-throughput screening assays involving the co-expression of coupled enzymes or chemical complementation. Selective glycosidase inhibitors and highly specific glycosidases are finding attractive applications in biomedicine, biology and proteomics. In recent years, carbohydrate-processing enzymes have become the enzymes of choice in many applications thanks to their stereoselectivity and efficiency. This review presents recent developments in glycosidase-catalyzed synthesis via two complementary approaches: the use of wild-type enzymes with engineered substrates, and mutant glycosidases. Genetic engineering has recently produced glucuronyl synthases, an inverting xylosynthase and the first mutant endo-β-N-acetylglucosaminidase. A thorough selection of enzyme strains and aptly modified substrates have resulted in rare glycostructures, such as N-acetyl-β-galactosaminuronates, β1,4-linked mannosides and α1,4-linked galactosides. The efficient selection of mutant enzymes is facilitated by high-throughput screening assays involving the co-expression of coupled enzymes or chemical complementation. Selective glycosidase inhibitors and highly specific glycosidases are finding attractive applications in biomedicine, biology and proteomics. an enzyme that cleaves internal linkages in a glycosidic chain, releasing an oligosaccharidic residue, for instance, removing the entire intact oligosaccharide portion from a glycoprotein. an enzyme that cleaves a single glycosidic residue at the non-reducing end of an oligosaccharide chain. retaining glycosidases, in which at the active site the catalytic nucleophile (Asp or Glu) is replaced by a non-nucleophilic residue (typically Ala, Ser or Gly). These mutated enzymes lose their hydrolytic activity and can catalyze tranglycosylations with suitable activated donors, such as glycosyl fluorides with inverted anomeric configuration, in a virtually quantitative yield. Very recently, this definition has been extended to inverting glycosidases and hexosaminidases. a retaining glycosidase releases products from hydrolysis and transglycosylation that have the same configuration at the anomeric carbon as the original glycoside substrate. an inverting glycosidase affords products that have opposite configuration to the processed glycoside. Both retaining and inverting types of glycosidases differ in their mechanism (Box 1). a thermodynamically controlled equilibrium process, in which a free monosaccharide reacts with a nucleophile under exclusion of a water molecule and hence, chemically, can be considered a condensation reaction. a glycosylation using carbohydrate substrates that carry various functional groups and/or modifications in the molecule. In this way, structurally modified carbohydrate products can be produced and, also, regioselectivity and yield of the reaction can be influenced. a retaining glycosidase with a substitution of the acid–base catalytic carboxylate at the catalytic site by a non-nucleophilic residue. This enzyme is able to catalyze high-yielding glycosylations of nucleophilic thiosugars, such as pyranose acceptors carrying a thiol at C3, C4 or C6, using glycosyl donors with reactive leaving groups. a double mutant of a retaining glycosidase, in which both the catalytic nucleophile and the catalytic acid–base residue at the active site have been substituted by non-nucleophilic residues. It can catalyze transglycosylations with glycosyl fluorides of inverted anomeric configuration (similarly to a glycosynthase) and thiosugar acceptors (similarly to a thioglycoligase). a kinetically controlled reaction, in which a glycosidase (typically, a retaining exo-glycosidase) transfers a glycosidic residue from an activated glycoside donor to an acceptor while retaining anomeric configuration." @default.
- W2053106801 created "2016-06-24" @default.
- W2053106801 creator A5012601206 @default.
- W2053106801 creator A5078632136 @default.
- W2053106801 date "2009-04-01" @default.
- W2053106801 modified "2023-10-17" @default.
- W2053106801 title "Glycosidases: a key to tailored carbohydrates" @default.
- W2053106801 cites W1527284294 @default.
- W2053106801 cites W1579902030 @default.
- W2053106801 cites W1580799101 @default.
- W2053106801 cites W1964631852 @default.
- W2053106801 cites W1968140839 @default.
- W2053106801 cites W1969433403 @default.
- W2053106801 cites W1970707312 @default.
- W2053106801 cites W1976609472 @default.
- W2053106801 cites W1977391927 @default.
- W2053106801 cites W1977416367 @default.
- W2053106801 cites W1979566946 @default.
- W2053106801 cites W1979637981 @default.
- W2053106801 cites W1981372363 @default.
- W2053106801 cites W1982579849 @default.
- W2053106801 cites W1990315098 @default.
- W2053106801 cites W1991868236 @default.
- W2053106801 cites W1992184483 @default.
- W2053106801 cites W1994423695 @default.
- W2053106801 cites W1996071995 @default.
- W2053106801 cites W1998146457 @default.
- W2053106801 cites W2000809990 @default.
- W2053106801 cites W2003587389 @default.
- W2053106801 cites W2011523612 @default.
- W2053106801 cites W2011945278 @default.
- W2053106801 cites W2013531558 @default.
- W2053106801 cites W2015672666 @default.
- W2053106801 cites W2019260651 @default.
- W2053106801 cites W2019320363 @default.
- W2053106801 cites W2030318875 @default.
- W2053106801 cites W2038431357 @default.
- W2053106801 cites W2039191791 @default.
- W2053106801 cites W2039687878 @default.
- W2053106801 cites W2043564026 @default.
- W2053106801 cites W2044509450 @default.
- W2053106801 cites W2045377815 @default.
- W2053106801 cites W2045625530 @default.
- W2053106801 cites W2052815892 @default.
- W2053106801 cites W2056767067 @default.
- W2053106801 cites W2059796456 @default.
- W2053106801 cites W2060744329 @default.
- W2053106801 cites W2066731902 @default.
- W2053106801 cites W2067555867 @default.
- W2053106801 cites W2067838596 @default.
- W2053106801 cites W2076138970 @default.
- W2053106801 cites W2076214743 @default.
- W2053106801 cites W2077735205 @default.
- W2053106801 cites W2077768108 @default.
- W2053106801 cites W2078819867 @default.
- W2053106801 cites W2080172714 @default.
- W2053106801 cites W2087885447 @default.
- W2053106801 cites W2088244328 @default.
- W2053106801 cites W2090129648 @default.
- W2053106801 cites W2093915183 @default.
- W2053106801 cites W2094566976 @default.
- W2053106801 cites W2099138063 @default.
- W2053106801 cites W2102416879 @default.
- W2053106801 cites W2113689266 @default.
- W2053106801 cites W2118707645 @default.
- W2053106801 cites W2122484161 @default.
- W2053106801 cites W2126756652 @default.
- W2053106801 cites W2131019078 @default.
- W2053106801 cites W2131265474 @default.
- W2053106801 cites W2133538505 @default.
- W2053106801 cites W2141589632 @default.
- W2053106801 cites W2145949970 @default.
- W2053106801 cites W2147946492 @default.
- W2053106801 cites W2149372361 @default.
- W2053106801 cites W2150460043 @default.
- W2053106801 cites W2154819382 @default.
- W2053106801 cites W2158478573 @default.
- W2053106801 cites W2171970785 @default.
- W2053106801 cites W2950421900 @default.
- W2053106801 cites W3187487199 @default.
- W2053106801 cites W4235656195 @default.
- W2053106801 doi "https://doi.org/10.1016/j.tibtech.2008.12.003" @default.
- W2053106801 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19250692" @default.
- W2053106801 hasPublicationYear "2009" @default.
- W2053106801 type Work @default.
- W2053106801 sameAs 2053106801 @default.
- W2053106801 citedByCount "144" @default.
- W2053106801 countsByYear W20531068012012 @default.
- W2053106801 countsByYear W20531068012013 @default.
- W2053106801 countsByYear W20531068012014 @default.
- W2053106801 countsByYear W20531068012015 @default.
- W2053106801 countsByYear W20531068012016 @default.
- W2053106801 countsByYear W20531068012017 @default.
- W2053106801 countsByYear W20531068012018 @default.
- W2053106801 countsByYear W20531068012019 @default.
- W2053106801 countsByYear W20531068012020 @default.
- W2053106801 countsByYear W20531068012021 @default.
- W2053106801 countsByYear W20531068012022 @default.