Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053153607> ?p ?o ?g. }
- W2053153607 endingPage "185" @default.
- W2053153607 startingPage "179" @default.
- W2053153607 abstract "In this paper, we present a new technique for automatic seizure detection in electroencephalogram (EEG) signals by using Hilbert marginal spectrum (HMS) analysis. As the EEG signal is highly nonlinear and nonstationary, the traditional Fourier analysis which expands signals in terms of sinusoids cannot appropriately represent the amplitude contribution from each frequency value. The HMS is derived from the empirical mode decomposition (EMD) which decomposes signal into a collection of intrinsic mode functions (IMFs). Since this decomposition is based on the local characteristic time scale of the signal, it can be well applied to nonlinear and nonstationary processes. In this work, the spectral entropies and energy features of frequency-bands of the rhythms using HMS analysis are extracted and fed into the support vector machine (SVM) for seizure detection of EEG signals. A final comparison between the results obtained with the developed technique and results adopted by Polat and coworkers using Fourier analysis with the same database is given to show the effectiveness of this technique for seizure detection." @default.
- W2053153607 created "2016-06-24" @default.
- W2053153607 creator A5018625234 @default.
- W2053153607 creator A5052594325 @default.
- W2053153607 creator A5055672506 @default.
- W2053153607 creator A5058423417 @default.
- W2053153607 date "2015-04-01" @default.
- W2053153607 modified "2023-10-06" @default.
- W2053153607 title "Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals" @default.
- W2053153607 cites W1969946769 @default.
- W2053153607 cites W1976724965 @default.
- W2053153607 cites W1979148805 @default.
- W2053153607 cites W1983874169 @default.
- W2053153607 cites W1990441178 @default.
- W2053153607 cites W1998711164 @default.
- W2053153607 cites W2000548777 @default.
- W2053153607 cites W2007221293 @default.
- W2053153607 cites W2008899576 @default.
- W2053153607 cites W2016998251 @default.
- W2053153607 cites W2021970732 @default.
- W2053153607 cites W2023335485 @default.
- W2053153607 cites W2030925257 @default.
- W2053153607 cites W2038971587 @default.
- W2053153607 cites W2041935121 @default.
- W2053153607 cites W2050209058 @default.
- W2053153607 cites W2053744708 @default.
- W2053153607 cites W2065738575 @default.
- W2053153607 cites W2069350326 @default.
- W2053153607 cites W2071341607 @default.
- W2053153607 cites W2072880371 @default.
- W2053153607 cites W2080966422 @default.
- W2053153607 cites W2081895431 @default.
- W2053153607 cites W2088222765 @default.
- W2053153607 cites W2111125935 @default.
- W2053153607 cites W2118286367 @default.
- W2053153607 cites W2139212933 @default.
- W2053153607 cites W2140208140 @default.
- W2053153607 cites W2153635508 @default.
- W2053153607 cites W2154877864 @default.
- W2053153607 cites W2156192068 @default.
- W2053153607 cites W4239510810 @default.
- W2053153607 doi "https://doi.org/10.1016/j.bspc.2015.01.002" @default.
- W2053153607 hasPublicationYear "2015" @default.
- W2053153607 type Work @default.
- W2053153607 sameAs 2053153607 @default.
- W2053153607 citedByCount "134" @default.
- W2053153607 countsByYear W20531536072015 @default.
- W2053153607 countsByYear W20531536072016 @default.
- W2053153607 countsByYear W20531536072017 @default.
- W2053153607 countsByYear W20531536072018 @default.
- W2053153607 countsByYear W20531536072019 @default.
- W2053153607 countsByYear W20531536072020 @default.
- W2053153607 countsByYear W20531536072021 @default.
- W2053153607 countsByYear W20531536072022 @default.
- W2053153607 countsByYear W20531536072023 @default.
- W2053153607 crossrefType "journal-article" @default.
- W2053153607 hasAuthorship W2053153607A5018625234 @default.
- W2053153607 hasAuthorship W2053153607A5052594325 @default.
- W2053153607 hasAuthorship W2053153607A5055672506 @default.
- W2053153607 hasAuthorship W2053153607A5058423417 @default.
- W2053153607 hasConcept C102519508 @default.
- W2053153607 hasConcept C104267543 @default.
- W2053153607 hasConcept C105795698 @default.
- W2053153607 hasConcept C118552586 @default.
- W2053153607 hasConcept C121332964 @default.
- W2053153607 hasConcept C12267149 @default.
- W2053153607 hasConcept C134306372 @default.
- W2053153607 hasConcept C153180895 @default.
- W2053153607 hasConcept C154945302 @default.
- W2053153607 hasConcept C15744967 @default.
- W2053153607 hasConcept C158622935 @default.
- W2053153607 hasConcept C168110828 @default.
- W2053153607 hasConcept C180205008 @default.
- W2053153607 hasConcept C186370098 @default.
- W2053153607 hasConcept C199360897 @default.
- W2053153607 hasConcept C203024314 @default.
- W2053153607 hasConcept C25570617 @default.
- W2053153607 hasConcept C2779843651 @default.
- W2053153607 hasConcept C28490314 @default.
- W2053153607 hasConcept C28799612 @default.
- W2053153607 hasConcept C33923547 @default.
- W2053153607 hasConcept C41008148 @default.
- W2053153607 hasConcept C522805319 @default.
- W2053153607 hasConcept C62520636 @default.
- W2053153607 hasConcept C76155785 @default.
- W2053153607 hasConcept C84462506 @default.
- W2053153607 hasConcept C9390403 @default.
- W2053153607 hasConceptScore W2053153607C102519508 @default.
- W2053153607 hasConceptScore W2053153607C104267543 @default.
- W2053153607 hasConceptScore W2053153607C105795698 @default.
- W2053153607 hasConceptScore W2053153607C118552586 @default.
- W2053153607 hasConceptScore W2053153607C121332964 @default.
- W2053153607 hasConceptScore W2053153607C12267149 @default.
- W2053153607 hasConceptScore W2053153607C134306372 @default.
- W2053153607 hasConceptScore W2053153607C153180895 @default.
- W2053153607 hasConceptScore W2053153607C154945302 @default.
- W2053153607 hasConceptScore W2053153607C15744967 @default.
- W2053153607 hasConceptScore W2053153607C158622935 @default.