Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053248859> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W2053248859 endingPage "452" @default.
- W2053248859 startingPage "451" @default.
- W2053248859 abstract "The December 2011 issue of the Journal of Agricultural, Biological, and Environmental Statistics is on the topic “Computer models and spatial statistics for environmental science.” This is a topic of great interest as the study of complex environmental phenomena increasingly relies on deterministic computer models. These models, for example regional climate models or rainfall-runoff simulators, are mathematical models that describe the evolution in time of a physical process. Usually, they consist of complex differential or partial differential equations that are not solvable in closed form. Hence, these are typically solved using numerical techniques, yielding deterministic predictions of a process. In this special issue, researchers tackle several important statistical problems that arise in the analysis of computer model output, for example calibrating model output with observed data, comparing and combing output from several computer models and physical observations, and building statistical emulators for computer models to predict the outcome of the models for new sets of input conditions. An important contribution of statisticians in the analysis of deterministic models is to quantify uncertainty in inferences and predictions in rigorous fashion. Uncertainty quantification is of great interest, especially as information from complex computer models and messy observational data is used for decision making. There are several types of uncertainty, including (1) parametric uncertainty in the model’s inputs or tuning parameters and (2) structural uncertainty in the mathematical equations that define the model. In “First-Order Emulator Inference for Parameters in Nonlinear Mechanistic Models”, Mevin B. Hooten, William B. Leeds, Jerome Fiechter, and Christopher K. Wikle provide a computationally-efficient method for quantifying parametric uncertainty. They approximate the complicated computer model with a more tractable statistical model, and use" @default.
- W2053248859 created "2016-06-24" @default.
- W2053248859 creator A5068521254 @default.
- W2053248859 creator A5083979761 @default.
- W2053248859 date "2011-10-27" @default.
- W2053248859 modified "2023-10-16" @default.
- W2053248859 title "Guest Editors’ Introduction to the Special Issue on “Computer Models and Spatial Statistics for Environmental Science”" @default.
- W2053248859 doi "https://doi.org/10.1007/s13253-011-0071-9" @default.
- W2053248859 hasPublicationYear "2011" @default.
- W2053248859 type Work @default.
- W2053248859 sameAs 2053248859 @default.
- W2053248859 citedByCount "0" @default.
- W2053248859 crossrefType "journal-article" @default.
- W2053248859 hasAuthorship W2053248859A5068521254 @default.
- W2053248859 hasAuthorship W2053248859A5083979761 @default.
- W2053248859 hasBestOaLocation W20532488591 @default.
- W2053248859 hasConcept C105795698 @default.
- W2053248859 hasConcept C149782125 @default.
- W2053248859 hasConcept C159620131 @default.
- W2053248859 hasConcept C2522767166 @default.
- W2053248859 hasConcept C33923547 @default.
- W2053248859 hasConcept C41008148 @default.
- W2053248859 hasConceptScore W2053248859C105795698 @default.
- W2053248859 hasConceptScore W2053248859C149782125 @default.
- W2053248859 hasConceptScore W2053248859C159620131 @default.
- W2053248859 hasConceptScore W2053248859C2522767166 @default.
- W2053248859 hasConceptScore W2053248859C33923547 @default.
- W2053248859 hasConceptScore W2053248859C41008148 @default.
- W2053248859 hasIssue "4" @default.
- W2053248859 hasLocation W20532488591 @default.
- W2053248859 hasOpenAccess W2053248859 @default.
- W2053248859 hasPrimaryLocation W20532488591 @default.
- W2053248859 hasRelatedWork W1996408511 @default.
- W2053248859 hasRelatedWork W2144857771 @default.
- W2053248859 hasRelatedWork W2201832945 @default.
- W2053248859 hasRelatedWork W2354685110 @default.
- W2053248859 hasRelatedWork W2377682234 @default.
- W2053248859 hasRelatedWork W2805205454 @default.
- W2053248859 hasRelatedWork W3125873953 @default.
- W2053248859 hasRelatedWork W4226042055 @default.
- W2053248859 hasRelatedWork W4247880953 @default.
- W2053248859 hasRelatedWork W2116042269 @default.
- W2053248859 hasVolume "16" @default.
- W2053248859 isParatext "false" @default.
- W2053248859 isRetracted "false" @default.
- W2053248859 magId "2053248859" @default.
- W2053248859 workType "article" @default.