Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053376610> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2053376610 endingPage "6768" @default.
- W2053376610 startingPage "6753" @default.
- W2053376610 abstract "Neural networks can be viewed as applications that map one space, the input space, into some output space. In order to simulate the desired mapping the network has to go through a learning process consisting of an iterative change of the internal parameters, through the presentation of many input patterns and their corresponding output patterns. The training process is accomplished if the error between the computed output and the desired output pattern is minimal for all examples in the training set. The network will then simulate the desired mapping on the restricted domain of the training examples. We describe an experiment where a neural network is designed to accept a synthetic common shot gather (i.e., a set of seismograms obtained from a single source), as its input pattern and to compute the corresponding one‐dimensional large‐scale velocity model as its output. The subsurface models are built up of eight layers with constant layer thickness over a homogeneous half‐space, 450 examples are used to train the network. After the training process the network never computes a subsurface model which perfectly fits the desired one, but the approximation of the network is sufficient to take this model as starting model for further seismic imaging algorithms. The trained network computes satisfactory velocity profiles for 80% of the new seismic gathers not included in the training set. Although the network gives results that are stable when the input is contaminated with white noise, the network is not robust against strong, i.e., correlated, noise. This application proves that neural networks are able to solve nontrivial inverse problems." @default.
- W2053376610 created "2016-06-24" @default.
- W2053376610 creator A5003884818 @default.
- W2053376610 creator A5034334578 @default.
- W2053376610 date "1994-04-10" @default.
- W2053376610 modified "2023-10-18" @default.
- W2053376610 title "Neural networks and inversion of seismic data" @default.
- W2053376610 cites W1498436455 @default.
- W2053376610 cites W1979581468 @default.
- W2053376610 cites W1981142313 @default.
- W2053376610 cites W2078496737 @default.
- W2053376610 cites W2082533757 @default.
- W2053376610 cites W2091121667 @default.
- W2053376610 cites W2107725879 @default.
- W2053376610 cites W2137983211 @default.
- W2053376610 cites W2165758113 @default.
- W2053376610 cites W2476526780 @default.
- W2053376610 doi "https://doi.org/10.1029/93jb01563" @default.
- W2053376610 hasPublicationYear "1994" @default.
- W2053376610 type Work @default.
- W2053376610 sameAs 2053376610 @default.
- W2053376610 citedByCount "195" @default.
- W2053376610 countsByYear W20533766102012 @default.
- W2053376610 countsByYear W20533766102013 @default.
- W2053376610 countsByYear W20533766102014 @default.
- W2053376610 countsByYear W20533766102015 @default.
- W2053376610 countsByYear W20533766102016 @default.
- W2053376610 countsByYear W20533766102017 @default.
- W2053376610 countsByYear W20533766102018 @default.
- W2053376610 countsByYear W20533766102019 @default.
- W2053376610 countsByYear W20533766102020 @default.
- W2053376610 countsByYear W20533766102021 @default.
- W2053376610 countsByYear W20533766102022 @default.
- W2053376610 countsByYear W20533766102023 @default.
- W2053376610 crossrefType "journal-article" @default.
- W2053376610 hasAuthorship W2053376610A5003884818 @default.
- W2053376610 hasAuthorship W2053376610A5034334578 @default.
- W2053376610 hasConcept C111919701 @default.
- W2053376610 hasConcept C11413529 @default.
- W2053376610 hasConcept C115961682 @default.
- W2053376610 hasConcept C127313418 @default.
- W2053376610 hasConcept C154945302 @default.
- W2053376610 hasConcept C165205528 @default.
- W2053376610 hasConcept C169744125 @default.
- W2053376610 hasConcept C177264268 @default.
- W2053376610 hasConcept C1893757 @default.
- W2053376610 hasConcept C199360897 @default.
- W2053376610 hasConcept C41008148 @default.
- W2053376610 hasConcept C50644808 @default.
- W2053376610 hasConcept C77928131 @default.
- W2053376610 hasConcept C98045186 @default.
- W2053376610 hasConcept C99498987 @default.
- W2053376610 hasConceptScore W2053376610C111919701 @default.
- W2053376610 hasConceptScore W2053376610C11413529 @default.
- W2053376610 hasConceptScore W2053376610C115961682 @default.
- W2053376610 hasConceptScore W2053376610C127313418 @default.
- W2053376610 hasConceptScore W2053376610C154945302 @default.
- W2053376610 hasConceptScore W2053376610C165205528 @default.
- W2053376610 hasConceptScore W2053376610C169744125 @default.
- W2053376610 hasConceptScore W2053376610C177264268 @default.
- W2053376610 hasConceptScore W2053376610C1893757 @default.
- W2053376610 hasConceptScore W2053376610C199360897 @default.
- W2053376610 hasConceptScore W2053376610C41008148 @default.
- W2053376610 hasConceptScore W2053376610C50644808 @default.
- W2053376610 hasConceptScore W2053376610C77928131 @default.
- W2053376610 hasConceptScore W2053376610C98045186 @default.
- W2053376610 hasConceptScore W2053376610C99498987 @default.
- W2053376610 hasIssue "B4" @default.
- W2053376610 hasLocation W20533766101 @default.
- W2053376610 hasOpenAccess W2053376610 @default.
- W2053376610 hasPrimaryLocation W20533766101 @default.
- W2053376610 hasRelatedWork W1995405160 @default.
- W2053376610 hasRelatedWork W2002359080 @default.
- W2053376610 hasRelatedWork W2094112550 @default.
- W2053376610 hasRelatedWork W2350848567 @default.
- W2053376610 hasRelatedWork W2386387936 @default.
- W2053376610 hasRelatedWork W2392110728 @default.
- W2053376610 hasRelatedWork W239909823 @default.
- W2053376610 hasRelatedWork W2606104780 @default.
- W2053376610 hasRelatedWork W4239393130 @default.
- W2053376610 hasRelatedWork W2069549023 @default.
- W2053376610 hasVolume "99" @default.
- W2053376610 isParatext "false" @default.
- W2053376610 isRetracted "false" @default.
- W2053376610 magId "2053376610" @default.
- W2053376610 workType "article" @default.