Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053490531> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2053490531 endingPage "24" @default.
- W2053490531 startingPage "17" @default.
- W2053490531 abstract "CLSM의 플로우 및 강도특성은 비회, 매립회, 시멘트, 수량 등과 같은 배합비에 크게 의존하므로, 각 구성요소들의 배합비와 플로우 및 강도값에 대한 역학적 관계를 정량적으로 도출하기가 현실적으로 매우 어렵다. 따라서 CLSM의 구성성분 비율에 대한 플로우 및 압축강도값을 도출할 수 있는 산정방법이 필요하다. 이에 본 연구에서는 인공신경망 학습을 통해 플로우 및 일축압축강도를 실험을 통하지 않고 인공신경망을 이용하여 CLSM의 플로우 및 일축압축강도를 예측하고자 한다. 본 연구에 사용한 인공신경망모델에는 BPNN 학습 알고리즘을 적용, 인공신경망 학습효율 및 예측능력에 영향을 미치는 은닉층, 모멘텀상수, 목표시스템 오차값, 은닉층의 노드 수와 학습률을 변화시키면서 학습하여 각각의 변화에 따른 인공신경망 모델의 학습효율 및 예측능력을 평가하고 인공신경망의 유효성 검증을 위해 모델 구축 시에 사용하지 않은 새로운 자료에 대해 예측을 실시하여 실내실험 결과와 비교하여 이를 기준으로 CLSM의 플로우 및 압축강도 산정에 적합한 최적인공신경망 모델을 제안하였다. The characteristics of flow and strength of CLSM depend on the combination ratio including the fly ash, pond ash, cement, water quantity and etc. However, it is very difficult to draw the mechanism about the flow, strength and the mixing ratio of each components. Therefore, the method of calculation drawing the flow about the component ratio of CLSM and compression strength value is needed for the valid practical use of CLSM. To verify the efficiency of artificial neural network, new data which were not used for establishing the model were predicted and compared with the results of laboratory tests. In this research, it was used to evaluate the learning efficiency of the artificial neural network model and the prediction ability by changing the node number of hidden layer, learning rate, momentum, target system error and hidden layer. By using the results, the optimized artificial neural network model which is suitable for a flow and compressive strength estimate of CLSM was determined." @default.
- W2053490531 created "2016-06-24" @default.
- W2053490531 creator A5018627910 @default.
- W2053490531 creator A5026301555 @default.
- W2053490531 creator A5087003604 @default.
- W2053490531 date "2011-01-31" @default.
- W2053490531 modified "2023-10-18" @default.
- W2053490531 title "Application of Artificial Neural Networks for Prediction of the Flow and Strength of Controlled Low Strength Material" @default.
- W2053490531 cites W1555816601 @default.
- W2053490531 cites W1594358512 @default.
- W2053490531 cites W1979196034 @default.
- W2053490531 cites W1995341919 @default.
- W2053490531 cites W3000638139 @default.
- W2053490531 cites W603330098 @default.
- W2053490531 doi "https://doi.org/10.7843/kgs.2011.27.1.017" @default.
- W2053490531 hasPublicationYear "2011" @default.
- W2053490531 type Work @default.
- W2053490531 sameAs 2053490531 @default.
- W2053490531 citedByCount "0" @default.
- W2053490531 crossrefType "journal-article" @default.
- W2053490531 hasAuthorship W2053490531A5018627910 @default.
- W2053490531 hasAuthorship W2053490531A5026301555 @default.
- W2053490531 hasAuthorship W2053490531A5087003604 @default.
- W2053490531 hasBestOaLocation W20534905311 @default.
- W2053490531 hasConcept C121332964 @default.
- W2053490531 hasConcept C127413603 @default.
- W2053490531 hasConcept C138777275 @default.
- W2053490531 hasConcept C154945302 @default.
- W2053490531 hasConcept C159985019 @default.
- W2053490531 hasConcept C186060115 @default.
- W2053490531 hasConcept C187320778 @default.
- W2053490531 hasConcept C192562407 @default.
- W2053490531 hasConcept C2524010 @default.
- W2053490531 hasConcept C30407753 @default.
- W2053490531 hasConcept C33923547 @default.
- W2053490531 hasConcept C38349280 @default.
- W2053490531 hasConcept C41008148 @default.
- W2053490531 hasConcept C50644808 @default.
- W2053490531 hasConcept C62520636 @default.
- W2053490531 hasConcept C86803240 @default.
- W2053490531 hasConcept C87343466 @default.
- W2053490531 hasConceptScore W2053490531C121332964 @default.
- W2053490531 hasConceptScore W2053490531C127413603 @default.
- W2053490531 hasConceptScore W2053490531C138777275 @default.
- W2053490531 hasConceptScore W2053490531C154945302 @default.
- W2053490531 hasConceptScore W2053490531C159985019 @default.
- W2053490531 hasConceptScore W2053490531C186060115 @default.
- W2053490531 hasConceptScore W2053490531C187320778 @default.
- W2053490531 hasConceptScore W2053490531C192562407 @default.
- W2053490531 hasConceptScore W2053490531C2524010 @default.
- W2053490531 hasConceptScore W2053490531C30407753 @default.
- W2053490531 hasConceptScore W2053490531C33923547 @default.
- W2053490531 hasConceptScore W2053490531C38349280 @default.
- W2053490531 hasConceptScore W2053490531C41008148 @default.
- W2053490531 hasConceptScore W2053490531C50644808 @default.
- W2053490531 hasConceptScore W2053490531C62520636 @default.
- W2053490531 hasConceptScore W2053490531C86803240 @default.
- W2053490531 hasConceptScore W2053490531C87343466 @default.
- W2053490531 hasIssue "1" @default.
- W2053490531 hasLocation W20534905311 @default.
- W2053490531 hasOpenAccess W2053490531 @default.
- W2053490531 hasPrimaryLocation W20534905311 @default.
- W2053490531 hasRelatedWork W2024326447 @default.
- W2053490531 hasRelatedWork W202635399 @default.
- W2053490531 hasRelatedWork W2089087906 @default.
- W2053490531 hasRelatedWork W2351468758 @default.
- W2053490531 hasRelatedWork W2354718991 @default.
- W2053490531 hasRelatedWork W2355677768 @default.
- W2053490531 hasRelatedWork W2376312348 @default.
- W2053490531 hasRelatedWork W2389557062 @default.
- W2053490531 hasRelatedWork W2502988378 @default.
- W2053490531 hasRelatedWork W2899084033 @default.
- W2053490531 hasVolume "27" @default.
- W2053490531 isParatext "false" @default.
- W2053490531 isRetracted "false" @default.
- W2053490531 magId "2053490531" @default.
- W2053490531 workType "article" @default.