Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053511129> ?p ?o ?g. }
- W2053511129 endingPage "258" @default.
- W2053511129 startingPage "248" @default.
- W2053511129 abstract "An experimental assessment of the copper–water nanofluid flow through different plate-fin channels is the main purpose of this study. Seven plate-fin channels, including plain, perforated, offset strip, louvered, wavy, vortex generator, and pin, were fabricated and tested. The copper–water nanofluids were produced by a one-step method, namely electro-exploded wire technique, with five nanoparticles weight fractions (i.e., 0%, 0.1%, 0.2%, 0.3%, and 0.4%). The required properties of the nanofluids were systematically measured, and empirical correlations were proposed. To obtain accurate results, a highly precise test loop with the ability to produce a constant wall temperature was designed and fabricated. The results depicted that both the convective heat transfer coefficient and the pressure drop values of all the channels enhance with increasing the nanoparticles weight fraction. The appropriate thermal–hydraulic performance and maximum reduction of surface area were found for the vortex generator channel. Finally, correlations were proposed to predict the Nusselt number and Fanning friction factor of the base fluid and nanofluids flows in the studied plate-fin channels." @default.
- W2053511129 created "2016-06-24" @default.
- W2053511129 creator A5010962924 @default.
- W2053511129 creator A5040252679 @default.
- W2053511129 creator A5083077371 @default.
- W2053511129 date "2014-01-01" @default.
- W2053511129 modified "2023-09-25" @default.
- W2053511129 title "Experimental analysis of thermal–hydraulic performance of copper–water nanofluid flow in different plate-fin channels" @default.
- W2053511129 cites W1966028033 @default.
- W2053511129 cites W1970742706 @default.
- W2053511129 cites W1973472179 @default.
- W2053511129 cites W1977745744 @default.
- W2053511129 cites W1979270711 @default.
- W2053511129 cites W1981823487 @default.
- W2053511129 cites W1982341037 @default.
- W2053511129 cites W1984712857 @default.
- W2053511129 cites W1985254773 @default.
- W2053511129 cites W1987343361 @default.
- W2053511129 cites W1989341655 @default.
- W2053511129 cites W1990804724 @default.
- W2053511129 cites W1991659362 @default.
- W2053511129 cites W1995592777 @default.
- W2053511129 cites W1996732012 @default.
- W2053511129 cites W1998329975 @default.
- W2053511129 cites W2004279230 @default.
- W2053511129 cites W2007249866 @default.
- W2053511129 cites W2013107977 @default.
- W2053511129 cites W2019323193 @default.
- W2053511129 cites W2028531223 @default.
- W2053511129 cites W2031519382 @default.
- W2053511129 cites W2045237826 @default.
- W2053511129 cites W2049756669 @default.
- W2053511129 cites W2052061079 @default.
- W2053511129 cites W2056681054 @default.
- W2053511129 cites W2060678338 @default.
- W2053511129 cites W2062889162 @default.
- W2053511129 cites W2064236971 @default.
- W2053511129 cites W2066008257 @default.
- W2053511129 cites W2066015103 @default.
- W2053511129 cites W2066121842 @default.
- W2053511129 cites W2067596304 @default.
- W2053511129 cites W2072922584 @default.
- W2053511129 cites W2076795616 @default.
- W2053511129 cites W2078116944 @default.
- W2053511129 cites W2080827060 @default.
- W2053511129 cites W2083214933 @default.
- W2053511129 cites W2086564644 @default.
- W2053511129 cites W2094834974 @default.
- W2053511129 cites W2102075165 @default.
- W2053511129 cites W2111419912 @default.
- W2053511129 cites W2128724404 @default.
- W2053511129 cites W2157882747 @default.
- W2053511129 doi "https://doi.org/10.1016/j.expthermflusci.2013.09.018" @default.
- W2053511129 hasPublicationYear "2014" @default.
- W2053511129 type Work @default.
- W2053511129 sameAs 2053511129 @default.
- W2053511129 citedByCount "82" @default.
- W2053511129 countsByYear W20535111292014 @default.
- W2053511129 countsByYear W20535111292015 @default.
- W2053511129 countsByYear W20535111292016 @default.
- W2053511129 countsByYear W20535111292017 @default.
- W2053511129 countsByYear W20535111292018 @default.
- W2053511129 countsByYear W20535111292019 @default.
- W2053511129 countsByYear W20535111292020 @default.
- W2053511129 countsByYear W20535111292021 @default.
- W2053511129 countsByYear W20535111292022 @default.
- W2053511129 countsByYear W20535111292023 @default.
- W2053511129 crossrefType "journal-article" @default.
- W2053511129 hasAuthorship W2053511129A5010962924 @default.
- W2053511129 hasAuthorship W2053511129A5040252679 @default.
- W2053511129 hasAuthorship W2053511129A5083077371 @default.
- W2053511129 hasConcept C114088122 @default.
- W2053511129 hasConcept C121332964 @default.
- W2053511129 hasConcept C130230704 @default.
- W2053511129 hasConcept C140369647 @default.
- W2053511129 hasConcept C140820882 @default.
- W2053511129 hasConcept C159985019 @default.
- W2053511129 hasConcept C16644385 @default.
- W2053511129 hasConcept C182748727 @default.
- W2053511129 hasConcept C191897082 @default.
- W2053511129 hasConcept C192562407 @default.
- W2053511129 hasConcept C196558001 @default.
- W2053511129 hasConcept C21946209 @default.
- W2053511129 hasConcept C2777777821 @default.
- W2053511129 hasConcept C29700514 @default.
- W2053511129 hasConcept C50517652 @default.
- W2053511129 hasConcept C544778455 @default.
- W2053511129 hasConcept C57879066 @default.
- W2053511129 hasConcept C91721477 @default.
- W2053511129 hasConceptScore W2053511129C114088122 @default.
- W2053511129 hasConceptScore W2053511129C121332964 @default.
- W2053511129 hasConceptScore W2053511129C130230704 @default.
- W2053511129 hasConceptScore W2053511129C140369647 @default.
- W2053511129 hasConceptScore W2053511129C140820882 @default.
- W2053511129 hasConceptScore W2053511129C159985019 @default.
- W2053511129 hasConceptScore W2053511129C16644385 @default.
- W2053511129 hasConceptScore W2053511129C182748727 @default.
- W2053511129 hasConceptScore W2053511129C191897082 @default.