Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053619275> ?p ?o ?g. }
- W2053619275 endingPage "814" @default.
- W2053619275 startingPage "795" @default.
- W2053619275 abstract "Volcanic gases collected during episode 1 of the Puu Oo eruption along the east rift zone of Kilauea Volcano, Hawaii, have uniform C-O-H-S-Cl-F compositions that are sharply depleted in CO2. The CO2-poor gases are typical of Type II volcanic gases (gerlach and Graeber, 1985) and were emitted from evolved magma stored for a prolonged period of time in the east rift zone after releasing CO2-rich gases during an earlier period of temporary residence in the summit magma chamber. The samples are remarkably free of contamination by atmospheric gases and meteoric water. Thermodynamic evaluation of the analytical data shows that the episode 1 gases have equilibrium compositions appropriate for temperatures between 935 and 1032°C. Open- and closed-system equilibrium models of species distributions for the episode 1 gases show unequivocally that coexisting lavas buffered the gas oxygen fugacities during cooling. These models indicate that the fO2 buffering process occurs by transfer of oxygen from the major species in the gas phase (H2O, CO2, SO2) to the lava during cooling and that the transfer of oxygen also controls the fugacities of several minor and trace species (H2, CO, H2S, S2, Cl2, F2), in addition to O2 during cooling. Gas/lava exchanges of other components are apparently insignificant and exert little influence, compared to oxygen exchange, during cooling. Oxygen transfer during cooling is variable, presumably reflecting short-term fluctuations in gas flow rates. Higher flow rates restrict the time available for gas/lava oxygen transfer and result in gases with higher equilibrium temperatures. Lower flow rates favor fO2-constrained equilibration by oxygen transfer down to lower temperatures. Thus, the chemical equilibrium preserved in these gases is a heterogeneous equilibrium constrained by oxygen fugacity, and the equilibrium temperatures implied by the compositions of the gases reflect the temperatures at which gas/lava oxygen exchange ceased. This conclusion challenges the common assumption that volcanic gases are released from lava in a state of chemical equilibrium and then continue equilibrating homogeneously with falling temperature until reaction rates are unable to keep pace with cooling. No evidence is found, moreover, that certain gas species are kinetically more responsive and able to equilibrate down to lower temperatures than those of the last gas/lava oxygen exchange. Homogeneous reaction rates in the gas phase are apparently slow compared to the time it took for the gases to move from the last site of gas/lava equilibration to the site of collection. An earlier set of data for higher temperature CO2-rich Type I volcanic gases, which come from sustained summit lava lake eruptions supplied by magma that experienced substantially shorter periods of crustal storage, shows fO2 buffering by oxygen transfer up to 1185°C. Oxygen fugacity measurements in drill holes into ponded lava flows suggest that buffering by oxygen transfer may control the fO2 of residual gases down to several hundred degrees below the solidus in the early stages of cooling. Although the details of the fO2 buffering mechanisms for oxygen transfer are unknown, the fact that fO2 buffering is effective from molten to subsolidus conditions suggests that the reaction mechanisms must change with cooling as the reactants change from predominantly melt, to melt plus crystals, to glass plus crystals. Mass balance calculations suggest that redox reactions between the gas and ferrous/ferric iron in the lava are plausible mechanisms for the oxygen transfer and that the fO2 of the gases is buffered by sliding ferrous/ferric equilibria in the erupting lavas. Contrary to expectations based on models predicting the oxidation of basalt by H2 and CO escape during crustal storage, CO2-rich Type I gases and CO2-poor Type II gases have identical oxygen fugacities despite greatly different crustal storage and degassing histories. Volcanic gas data give a tightly constrained log fO2 of NNO − 0.5 (±0.05) for subaerially erupted Kilauea basalt from liquidus to solidus temperatures, consistent with recent fO2 determinations for the mantle source regions of ocean island basalts. Because the oxygen fugacities of volcanic gases emitted by subaerial lavas imply that the fO2 of Kilauea basalt is unchanged during crustal storage, Kilauea basalt either arrives in the crust with an oxygen fugacity between NNO and FMQ, or it develops an oxygen fugacity in this range immediately upon arrival in the summit chamber." @default.
- W2053619275 created "2016-06-24" @default.
- W2053619275 creator A5063008900 @default.
- W2053619275 date "1993-02-01" @default.
- W2053619275 modified "2023-10-16" @default.
- W2053619275 title "Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt" @default.
- W2053619275 cites W1966555934 @default.
- W2053619275 cites W1966609916 @default.
- W2053619275 cites W1971600926 @default.
- W2053619275 cites W1973779467 @default.
- W2053619275 cites W1977638695 @default.
- W2053619275 cites W1986713906 @default.
- W2053619275 cites W1989978501 @default.
- W2053619275 cites W1990322558 @default.
- W2053619275 cites W1994057479 @default.
- W2053619275 cites W2000864414 @default.
- W2053619275 cites W2007457285 @default.
- W2053619275 cites W2016245192 @default.
- W2053619275 cites W2017896872 @default.
- W2053619275 cites W2024337591 @default.
- W2053619275 cites W2026969831 @default.
- W2053619275 cites W2032495803 @default.
- W2053619275 cites W2034907523 @default.
- W2053619275 cites W2035383650 @default.
- W2053619275 cites W2035810404 @default.
- W2053619275 cites W2039086776 @default.
- W2053619275 cites W2041348481 @default.
- W2053619275 cites W2041532412 @default.
- W2053619275 cites W2048233305 @default.
- W2053619275 cites W2048343882 @default.
- W2053619275 cites W2056910670 @default.
- W2053619275 cites W2061064339 @default.
- W2053619275 cites W2065550983 @default.
- W2053619275 cites W2076340384 @default.
- W2053619275 cites W2091891080 @default.
- W2053619275 cites W2122139149 @default.
- W2053619275 cites W2134874310 @default.
- W2053619275 cites W2148922341 @default.
- W2053619275 cites W2151799382 @default.
- W2053619275 cites W2168241514 @default.
- W2053619275 cites W235982493 @default.
- W2053619275 cites W237609476 @default.
- W2053619275 cites W2991004130 @default.
- W2053619275 doi "https://doi.org/10.1016/0016-7037(93)90169-w" @default.
- W2053619275 hasPublicationYear "1993" @default.
- W2053619275 type Work @default.
- W2053619275 sameAs 2053619275 @default.
- W2053619275 citedByCount "84" @default.
- W2053619275 countsByYear W20536192752012 @default.
- W2053619275 countsByYear W20536192752013 @default.
- W2053619275 countsByYear W20536192752014 @default.
- W2053619275 countsByYear W20536192752015 @default.
- W2053619275 countsByYear W20536192752016 @default.
- W2053619275 countsByYear W20536192752017 @default.
- W2053619275 countsByYear W20536192752018 @default.
- W2053619275 countsByYear W20536192752019 @default.
- W2053619275 countsByYear W20536192752020 @default.
- W2053619275 countsByYear W20536192752021 @default.
- W2053619275 countsByYear W20536192752022 @default.
- W2053619275 countsByYear W20536192752023 @default.
- W2053619275 crossrefType "journal-article" @default.
- W2053619275 hasAuthorship W2053619275A5063008900 @default.
- W2053619275 hasConcept C109007969 @default.
- W2053619275 hasConcept C113754120 @default.
- W2053619275 hasConcept C114793014 @default.
- W2053619275 hasConcept C120806208 @default.
- W2053619275 hasConcept C127313418 @default.
- W2053619275 hasConcept C161509811 @default.
- W2053619275 hasConcept C17409809 @default.
- W2053619275 hasConcept C178790620 @default.
- W2053619275 hasConcept C183222429 @default.
- W2053619275 hasConcept C185592680 @default.
- W2053619275 hasConcept C2908550418 @default.
- W2053619275 hasConcept C32848823 @default.
- W2053619275 hasConcept C50682988 @default.
- W2053619275 hasConcept C540031477 @default.
- W2053619275 hasConcept C67236022 @default.
- W2053619275 hasConcept C93746451 @default.
- W2053619275 hasConceptScore W2053619275C109007969 @default.
- W2053619275 hasConceptScore W2053619275C113754120 @default.
- W2053619275 hasConceptScore W2053619275C114793014 @default.
- W2053619275 hasConceptScore W2053619275C120806208 @default.
- W2053619275 hasConceptScore W2053619275C127313418 @default.
- W2053619275 hasConceptScore W2053619275C161509811 @default.
- W2053619275 hasConceptScore W2053619275C17409809 @default.
- W2053619275 hasConceptScore W2053619275C178790620 @default.
- W2053619275 hasConceptScore W2053619275C183222429 @default.
- W2053619275 hasConceptScore W2053619275C185592680 @default.
- W2053619275 hasConceptScore W2053619275C2908550418 @default.
- W2053619275 hasConceptScore W2053619275C32848823 @default.
- W2053619275 hasConceptScore W2053619275C50682988 @default.
- W2053619275 hasConceptScore W2053619275C540031477 @default.
- W2053619275 hasConceptScore W2053619275C67236022 @default.
- W2053619275 hasConceptScore W2053619275C93746451 @default.
- W2053619275 hasIssue "4" @default.
- W2053619275 hasLocation W20536192751 @default.
- W2053619275 hasOpenAccess W2053619275 @default.
- W2053619275 hasPrimaryLocation W20536192751 @default.