Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053633763> ?p ?o ?g. }
- W2053633763 abstract "We consider the problem of dictionary learning over large scale models, where the model parameters are distributed over a multi-agent network. We demonstrate that the dual optimization problem for inference is better conditioned than the primal problem and that the dual cost function is an aggregate of individual costs associated with different network agents. We also establish that the dual cost function is smooth, strongly-convex, and possesses Lipschitz continuous gradients. These properties allow us to formulate efficient distributed ADMM algorithms for the dual inference problem. In particular, we show that the proximal operators utilized in the ADMM algorithm can be characterized in closed-form with linear complexity for certain useful dictionary learning scenarios." @default.
- W2053633763 created "2016-06-24" @default.
- W2053633763 creator A5054060991 @default.
- W2053633763 creator A5088339142 @default.
- W2053633763 creator A5091103447 @default.
- W2053633763 date "2014-09-01" @default.
- W2053633763 modified "2023-09-27" @default.
- W2053633763 title "Dictionary learning over large distributed models via dual-ADMM strategies" @default.
- W2053633763 cites W1514337951 @default.
- W2053633763 cites W1578480945 @default.
- W2053633763 cites W1597075609 @default.
- W2053633763 cites W1603765807 @default.
- W2053633763 cites W1751209994 @default.
- W2053633763 cites W1975900269 @default.
- W2053633763 cites W1982545958 @default.
- W2053633763 cites W1992918752 @default.
- W2053633763 cites W1999159404 @default.
- W2053633763 cites W2011818696 @default.
- W2053633763 cites W2044809283 @default.
- W2053633763 cites W2053745833 @default.
- W2053633763 cites W2064704422 @default.
- W2053633763 cites W2070712430 @default.
- W2053633763 cites W2101933716 @default.
- W2053633763 cites W2112447569 @default.
- W2053633763 cites W2117242598 @default.
- W2053633763 cites W2128638419 @default.
- W2053633763 cites W2130062883 @default.
- W2053633763 cites W2134130436 @default.
- W2053633763 cites W2151565294 @default.
- W2053633763 cites W2153663612 @default.
- W2053633763 cites W2164278908 @default.
- W2053633763 cites W2296319761 @default.
- W2053633763 cites W2953139536 @default.
- W2053633763 cites W2963157432 @default.
- W2053633763 doi "https://doi.org/10.1109/mlsp.2014.6958869" @default.
- W2053633763 hasPublicationYear "2014" @default.
- W2053633763 type Work @default.
- W2053633763 sameAs 2053633763 @default.
- W2053633763 citedByCount "2" @default.
- W2053633763 countsByYear W20536337632015 @default.
- W2053633763 countsByYear W20536337632021 @default.
- W2053633763 crossrefType "proceedings-article" @default.
- W2053633763 hasAuthorship W2053633763A5054060991 @default.
- W2053633763 hasAuthorship W2053633763A5088339142 @default.
- W2053633763 hasAuthorship W2053633763A5091103447 @default.
- W2053633763 hasConcept C112680207 @default.
- W2053633763 hasConcept C11413529 @default.
- W2053633763 hasConcept C121684516 @default.
- W2053633763 hasConcept C124952713 @default.
- W2053633763 hasConcept C126255220 @default.
- W2053633763 hasConcept C134306372 @default.
- W2053633763 hasConcept C137836250 @default.
- W2053633763 hasConcept C14036430 @default.
- W2053633763 hasConcept C142362112 @default.
- W2053633763 hasConcept C145446738 @default.
- W2053633763 hasConcept C154945302 @default.
- W2053633763 hasConcept C15744967 @default.
- W2053633763 hasConcept C157972887 @default.
- W2053633763 hasConcept C19417346 @default.
- W2053633763 hasConcept C22324862 @default.
- W2053633763 hasConcept C2524010 @default.
- W2053633763 hasConcept C2776214188 @default.
- W2053633763 hasConcept C2779104521 @default.
- W2053633763 hasConcept C2779582901 @default.
- W2053633763 hasConcept C2780980858 @default.
- W2053633763 hasConcept C3019659684 @default.
- W2053633763 hasConcept C33923547 @default.
- W2053633763 hasConcept C41008148 @default.
- W2053633763 hasConcept C78458016 @default.
- W2053633763 hasConcept C86803240 @default.
- W2053633763 hasConceptScore W2053633763C112680207 @default.
- W2053633763 hasConceptScore W2053633763C11413529 @default.
- W2053633763 hasConceptScore W2053633763C121684516 @default.
- W2053633763 hasConceptScore W2053633763C124952713 @default.
- W2053633763 hasConceptScore W2053633763C126255220 @default.
- W2053633763 hasConceptScore W2053633763C134306372 @default.
- W2053633763 hasConceptScore W2053633763C137836250 @default.
- W2053633763 hasConceptScore W2053633763C14036430 @default.
- W2053633763 hasConceptScore W2053633763C142362112 @default.
- W2053633763 hasConceptScore W2053633763C145446738 @default.
- W2053633763 hasConceptScore W2053633763C154945302 @default.
- W2053633763 hasConceptScore W2053633763C15744967 @default.
- W2053633763 hasConceptScore W2053633763C157972887 @default.
- W2053633763 hasConceptScore W2053633763C19417346 @default.
- W2053633763 hasConceptScore W2053633763C22324862 @default.
- W2053633763 hasConceptScore W2053633763C2524010 @default.
- W2053633763 hasConceptScore W2053633763C2776214188 @default.
- W2053633763 hasConceptScore W2053633763C2779104521 @default.
- W2053633763 hasConceptScore W2053633763C2779582901 @default.
- W2053633763 hasConceptScore W2053633763C2780980858 @default.
- W2053633763 hasConceptScore W2053633763C3019659684 @default.
- W2053633763 hasConceptScore W2053633763C33923547 @default.
- W2053633763 hasConceptScore W2053633763C41008148 @default.
- W2053633763 hasConceptScore W2053633763C78458016 @default.
- W2053633763 hasConceptScore W2053633763C86803240 @default.
- W2053633763 hasLocation W20536337631 @default.
- W2053633763 hasOpenAccess W2053633763 @default.
- W2053633763 hasPrimaryLocation W20536337631 @default.
- W2053633763 hasRelatedWork W1592300041 @default.
- W2053633763 hasRelatedWork W2464600283 @default.