Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053643897> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2053643897 endingPage "15781" @default.
- W2053643897 startingPage "15776" @default.
- W2053643897 abstract "The 3′-exonucleolytic decay of the mRNA for ribosomal protein S20 has been reconstituted in vitro using purified RNase II and crude extracts enriched for polynucleotide phosphorylase (PNPase) activity. We show that RNase II can catalyze the degradation of the 5′ two-thirds of the S20 mRNA and that prior oligoadenylation of the 3′ termini of truncated S20 mRNA substrates can significantly stimulate the initiation of degradation by RNase II. The intact S20 mRNA is, however, insensitive to attack by RNase II and polyadenylation of its 3′-end cannot overcome the natural resistance of the S20 mRNA to RNase II. Complete degradation of either the entire S20 mRNA without prior endonucleolytic cleavage or the 3′-terminal 147-residue fragment is dependent on both oligoadenylation and PNPase activity. Moreover, this process can take place in the absence of RNase E activity. Our data point to the importance of oligoadenylation in facilitating 3′-exonucleolytic activity and indicate that there are alternative degradative pathways. The implications for mRNA decay are discussed. The 3′-exonucleolytic decay of the mRNA for ribosomal protein S20 has been reconstituted in vitro using purified RNase II and crude extracts enriched for polynucleotide phosphorylase (PNPase) activity. We show that RNase II can catalyze the degradation of the 5′ two-thirds of the S20 mRNA and that prior oligoadenylation of the 3′ termini of truncated S20 mRNA substrates can significantly stimulate the initiation of degradation by RNase II. The intact S20 mRNA is, however, insensitive to attack by RNase II and polyadenylation of its 3′-end cannot overcome the natural resistance of the S20 mRNA to RNase II. Complete degradation of either the entire S20 mRNA without prior endonucleolytic cleavage or the 3′-terminal 147-residue fragment is dependent on both oligoadenylation and PNPase activity. Moreover, this process can take place in the absence of RNase E activity. Our data point to the importance of oligoadenylation in facilitating 3′-exonucleolytic activity and indicate that there are alternative degradative pathways. The implications for mRNA decay are discussed. INTRODUCTIONCurrent models for the turnover of mRNAs in Escherichia coli postulate that degradation is initiated by an endonucleolytic cleavage usually catalyzed by RNase E (1Mudd E.A. Krisch H.M. Higgins C.F. Mol. Microbiol. 1990; 4: 2127-2135Google Scholar, 2Babitzke P. Kushner S.R. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 1-5Google Scholar, 3Melefors Ö von Gabain A. Mol. Microbiol. 1991; 5: 857-864Google Scholar). Subsequent steps involve the attack on newly created 3′-ends by one or both of two exonucleases, RNase II or polynucleotide phosphorylase (PNPase) 1The abbreviation used is: PNPasepolynucleotide phosphorylase. (4Donovan W.P. Kushner S.R. Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 120-124Google Scholar, 5Belasco J.G. Higgins C.F. Gene (Amst.). 1988; 72: 15-23Google Scholar, 6Mclaren R.S. Newbury S.F. Dance G.S.C. Causton H.C. Higgins C.F. J. Mol. Biol. 1991; 221: 81-95Google Scholar). All three enzymes attack single-stranded RNAs (4Donovan W.P. Kushner S.R. Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 120-124Google Scholar, 5Belasco J.G. Higgins C.F. Gene (Amst.). 1988; 72: 15-23Google Scholar, 7Mackie G.A. J. Biol. Chem. 1992; 267: 1054-1061Google Scholar). This raises the question of how RNAs containing regions of extensive secondary structure can be degraded, since stem-loop structures can occlude potential RNase E sites (8Mackie G.A. Genereaux J.L. J. Mol. Biol. 1993; 234: 998-1012Google Scholar) and block the processive action of 3′-exonucleases (6Mclaren R.S. Newbury S.F. Dance G.S.C. Causton H.C. Higgins C.F. J. Mol. Biol. 1991; 221: 81-95Google Scholar). Recent work has implicated the products of the pcnB and pnp genes encoding poly(A) polymerase (9Cao G.J. Sarkar N. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 10380-10384Google Scholar, 10Masters M. Collums M.D. Oliver I.R. He L. MacNaughton E.J. Charters Y. J. Bacteriol. 1993; 175: 4405-4413Google Scholar) and PNPase, respectively, in the degradation of RNA I, a highly structured, small (108 nucleotides), untranslated, antisense inhibitor of the replication of colE1 replicons (11Xu F. Lin-Chao S. Cohen S.N. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 6756-6760Google Scholar, 12Xu F. Cohen S.N. Nature. 1995; 374: 180-183Google Scholar). Polyadenylation also destabilizes the mRNA encoding ribosomal protein S15 (13Hajnsdorf E. Braun F. Haugel-Nielson J. Regnier P. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 3973-3977Google Scholar) and appears to regulate the decay of mRNAs generally (14O'Hara E.B. Chekanova J.A. Ingle C.A. Kushner Z.R. Peters E. Kushner S.R. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1807-1811Google Scholar). These results have prompted Cohen to propose that polyadenylation facilitates the exonucleolytic degradation of RNAs, particularly by PNPase, and that cleavage of RNAs mediated by RNase E is functionally coordinated with the 3′-exonucleolytic activity of PNPase (15Cohen S.N. Cell. 1995; 80: 829-832Google Scholar). The latter seems plausible in view of the association between these enzymes (16Carpousis A.J. van Houwe G. Ehretsmann C. Krisch H.M. Cell. 1994; 76: 889-900Google Scholar, 17Py B. Causton H. Mudd E.A. Higgins C.F. Mol. Microbiol. 1994; 14: 717-729Google Scholar).The mRNA for ribosomal protein S20 is a well characterized substrate for RNase E both in vivo and in vitro (18Mackie G.A. J. Bacteriol. 1989; 171: 4112-4120Google Scholar, 19Rapaport L.R. Mackie G.A. J. Bacteriol. 1994; 176: 992-998Google Scholar, 20Mackie G.A. J. Bacteriol. 1991; 173: 2488-2497Google Scholar). Both crude and purified RNase E cleave a synthetic S20 transcript (372 residues) to generate a number of products, the most prominent of which spans 147 residues coterminal with the substrate's 3′-end and is identical to a degradative intermediate found in vivo (18Mackie G.A. J. Bacteriol. 1989; 171: 4112-4120Google Scholar, 20Mackie G.A. J. Bacteriol. 1991; 173: 2488-2497Google Scholar). Further degradation of the 3′-terminal 147-residue product of RNase E-mediated cleavage in vivo requires PNPase activity, since this product is stabilized and accumulates in pnp mutants (18Mackie G.A. J. Bacteriol. 1989; 171: 4112-4120Google Scholar). The 147-residue product is, however, essentially stable in vitro, even in relatively crude extracts (8Mackie G.A. Genereaux J.L. J. Mol. Biol. 1993; 234: 998-1012Google Scholar, 20Mackie G.A. J. Bacteriol. 1991; 173: 2488-2497Google Scholar). The S20 mRNA has served as a model to search for conditions that would permit its total degradation in vitro and to test some of the predictions of Cohen's model (15Cohen S.N. Cell. 1995; 80: 829-832Google Scholar). We show here that RNase II can participate in the degradation in vitro of the 5′ two-thirds of the S20 mRNA and that oligoadenylation can significantly stimulate the activity of RNase II. Furthermore, oligoadenylation is a prerequisite for the complete degradation of the S20 mRNA, a process also dependent on PNPase, but both steps can be completely uncoupled from endonucleolytic cleavage by RNase E. INTRODUCTIONCurrent models for the turnover of mRNAs in Escherichia coli postulate that degradation is initiated by an endonucleolytic cleavage usually catalyzed by RNase E (1Mudd E.A. Krisch H.M. Higgins C.F. Mol. Microbiol. 1990; 4: 2127-2135Google Scholar, 2Babitzke P. Kushner S.R. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 1-5Google Scholar, 3Melefors Ö von Gabain A. Mol. Microbiol. 1991; 5: 857-864Google Scholar). Subsequent steps involve the attack on newly created 3′-ends by one or both of two exonucleases, RNase II or polynucleotide phosphorylase (PNPase) 1The abbreviation used is: PNPasepolynucleotide phosphorylase. (4Donovan W.P. Kushner S.R. Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 120-124Google Scholar, 5Belasco J.G. Higgins C.F. Gene (Amst.). 1988; 72: 15-23Google Scholar, 6Mclaren R.S. Newbury S.F. Dance G.S.C. Causton H.C. Higgins C.F. J. Mol. Biol. 1991; 221: 81-95Google Scholar). All three enzymes attack single-stranded RNAs (4Donovan W.P. Kushner S.R. Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 120-124Google Scholar, 5Belasco J.G. Higgins C.F. Gene (Amst.). 1988; 72: 15-23Google Scholar, 7Mackie G.A. J. Biol. Chem. 1992; 267: 1054-1061Google Scholar). This raises the question of how RNAs containing regions of extensive secondary structure can be degraded, since stem-loop structures can occlude potential RNase E sites (8Mackie G.A. Genereaux J.L. J. Mol. Biol. 1993; 234: 998-1012Google Scholar) and block the processive action of 3′-exonucleases (6Mclaren R.S. Newbury S.F. Dance G.S.C. Causton H.C. Higgins C.F. J. Mol. Biol. 1991; 221: 81-95Google Scholar). Recent work has implicated the products of the pcnB and pnp genes encoding poly(A) polymerase (9Cao G.J. Sarkar N. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 10380-10384Google Scholar, 10Masters M. Collums M.D. Oliver I.R. He L. MacNaughton E.J. Charters Y. J. Bacteriol. 1993; 175: 4405-4413Google Scholar) and PNPase, respectively, in the degradation of RNA I, a highly structured, small (108 nucleotides), untranslated, antisense inhibitor of the replication of colE1 replicons (11Xu F. Lin-Chao S. Cohen S.N. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 6756-6760Google Scholar, 12Xu F. Cohen S.N. Nature. 1995; 374: 180-183Google Scholar). Polyadenylation also destabilizes the mRNA encoding ribosomal protein S15 (13Hajnsdorf E. Braun F. Haugel-Nielson J. Regnier P. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 3973-3977Google Scholar) and appears to regulate the decay of mRNAs generally (14O'Hara E.B. Chekanova J.A. Ingle C.A. Kushner Z.R. Peters E. Kushner S.R. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1807-1811Google Scholar). These results have prompted Cohen to propose that polyadenylation facilitates the exonucleolytic degradation of RNAs, particularly by PNPase, and that cleavage of RNAs mediated by RNase E is functionally coordinated with the 3′-exonucleolytic activity of PNPase (15Cohen S.N. Cell. 1995; 80: 829-832Google Scholar). The latter seems plausible in view of the association between these enzymes (16Carpousis A.J. van Houwe G. Ehretsmann C. Krisch H.M. Cell. 1994; 76: 889-900Google Scholar, 17Py B. Causton H. Mudd E.A. Higgins C.F. Mol. Microbiol. 1994; 14: 717-729Google Scholar).The mRNA for ribosomal protein S20 is a well characterized substrate for RNase E both in vivo and in vitro (18Mackie G.A. J. Bacteriol. 1989; 171: 4112-4120Google Scholar, 19Rapaport L.R. Mackie G.A. J. Bacteriol. 1994; 176: 992-998Google Scholar, 20Mackie G.A. J. Bacteriol. 1991; 173: 2488-2497Google Scholar). Both crude and purified RNase E cleave a synthetic S20 transcript (372 residues) to generate a number of products, the most prominent of which spans 147 residues coterminal with the substrate's 3′-end and is identical to a degradative intermediate found in vivo (18Mackie G.A. J. Bacteriol. 1989; 171: 4112-4120Google Scholar, 20Mackie G.A. J. Bacteriol. 1991; 173: 2488-2497Google Scholar). Further degradation of the 3′-terminal 147-residue product of RNase E-mediated cleavage in vivo requires PNPase activity, since this product is stabilized and accumulates in pnp mutants (18Mackie G.A. J. Bacteriol. 1989; 171: 4112-4120Google Scholar). The 147-residue product is, however, essentially stable in vitro, even in relatively crude extracts (8Mackie G.A. Genereaux J.L. J. Mol. Biol. 1993; 234: 998-1012Google Scholar, 20Mackie G.A. J. Bacteriol. 1991; 173: 2488-2497Google Scholar). The S20 mRNA has served as a model to search for conditions that would permit its total degradation in vitro and to test some of the predictions of Cohen's model (15Cohen S.N. Cell. 1995; 80: 829-832Google Scholar). We show here that RNase II can participate in the degradation in vitro of the 5′ two-thirds of the S20 mRNA and that oligoadenylation can significantly stimulate the activity of RNase II. Furthermore, oligoadenylation is a prerequisite for the complete degradation of the S20 mRNA, a process also dependent on PNPase, but both steps can be completely uncoupled from endonucleolytic cleavage by RNase E." @default.
- W2053643897 created "2016-06-24" @default.
- W2053643897 creator A5041261317 @default.
- W2053643897 creator A5084433298 @default.
- W2053643897 date "1996-06-01" @default.
- W2053643897 modified "2023-10-13" @default.
- W2053643897 title "Differential Sensitivities of Portions of the mRNA for Ribosomal Protein S20 to 3′-Exonucleases Dependent on Oligoadenylation and RNA Secondary Structure" @default.
- W2053643897 cites W1487552800 @default.
- W2053643897 cites W1497378428 @default.
- W2053643897 cites W1500916922 @default.
- W2053643897 cites W1529139551 @default.
- W2053643897 cites W1590550434 @default.
- W2053643897 cites W1736567173 @default.
- W2053643897 cites W1887302455 @default.
- W2053643897 cites W1970259868 @default.
- W2053643897 cites W1971421846 @default.
- W2053643897 cites W1975337504 @default.
- W2053643897 cites W1977181461 @default.
- W2053643897 cites W1982884371 @default.
- W2053643897 cites W1987688600 @default.
- W2053643897 cites W1988098435 @default.
- W2053643897 cites W2014746960 @default.
- W2053643897 cites W2016705470 @default.
- W2053643897 cites W2020887690 @default.
- W2053643897 cites W2030230281 @default.
- W2053643897 cites W2037330496 @default.
- W2053643897 cites W2049721980 @default.
- W2053643897 cites W2063693474 @default.
- W2053643897 cites W2077433124 @default.
- W2053643897 cites W2085849693 @default.
- W2053643897 cites W2091434091 @default.
- W2053643897 cites W2096641315 @default.
- W2053643897 cites W2103374070 @default.
- W2053643897 cites W2137724440 @default.
- W2053643897 cites W2138713739 @default.
- W2053643897 cites W2156756059 @default.
- W2053643897 cites W2168149109 @default.
- W2053643897 cites W2170319662 @default.
- W2053643897 cites W337709443 @default.
- W2053643897 doi "https://doi.org/10.1074/jbc.271.26.15776" @default.
- W2053643897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8663115" @default.
- W2053643897 hasPublicationYear "1996" @default.
- W2053643897 type Work @default.
- W2053643897 sameAs 2053643897 @default.
- W2053643897 citedByCount "76" @default.
- W2053643897 countsByYear W20536438972012 @default.
- W2053643897 countsByYear W20536438972014 @default.
- W2053643897 countsByYear W20536438972016 @default.
- W2053643897 countsByYear W20536438972018 @default.
- W2053643897 countsByYear W20536438972021 @default.
- W2053643897 crossrefType "journal-article" @default.
- W2053643897 hasAuthorship W2053643897A5041261317 @default.
- W2053643897 hasAuthorship W2053643897A5084433298 @default.
- W2053643897 hasConcept C104317684 @default.
- W2053643897 hasConcept C105580179 @default.
- W2053643897 hasConcept C153911025 @default.
- W2053643897 hasConcept C185592680 @default.
- W2053643897 hasConcept C38062823 @default.
- W2053643897 hasConcept C55493867 @default.
- W2053643897 hasConcept C67705224 @default.
- W2053643897 hasConcept C67905577 @default.
- W2053643897 hasConcept C86803240 @default.
- W2053643897 hasConcept C88478588 @default.
- W2053643897 hasConceptScore W2053643897C104317684 @default.
- W2053643897 hasConceptScore W2053643897C105580179 @default.
- W2053643897 hasConceptScore W2053643897C153911025 @default.
- W2053643897 hasConceptScore W2053643897C185592680 @default.
- W2053643897 hasConceptScore W2053643897C38062823 @default.
- W2053643897 hasConceptScore W2053643897C55493867 @default.
- W2053643897 hasConceptScore W2053643897C67705224 @default.
- W2053643897 hasConceptScore W2053643897C67905577 @default.
- W2053643897 hasConceptScore W2053643897C86803240 @default.
- W2053643897 hasConceptScore W2053643897C88478588 @default.
- W2053643897 hasIssue "26" @default.
- W2053643897 hasLocation W20536438971 @default.
- W2053643897 hasOpenAccess W2053643897 @default.
- W2053643897 hasPrimaryLocation W20536438971 @default.
- W2053643897 hasRelatedWork W1574378429 @default.
- W2053643897 hasRelatedWork W1585402634 @default.
- W2053643897 hasRelatedWork W1977540027 @default.
- W2053643897 hasRelatedWork W1984145164 @default.
- W2053643897 hasRelatedWork W2002887047 @default.
- W2053643897 hasRelatedWork W2023403269 @default.
- W2053643897 hasRelatedWork W2030932923 @default.
- W2053643897 hasRelatedWork W2068583669 @default.
- W2053643897 hasRelatedWork W2411890926 @default.
- W2053643897 hasRelatedWork W4300267380 @default.
- W2053643897 hasVolume "271" @default.
- W2053643897 isParatext "false" @default.
- W2053643897 isRetracted "false" @default.
- W2053643897 magId "2053643897" @default.
- W2053643897 workType "article" @default.