Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053649894> ?p ?o ?g. }
- W2053649894 endingPage "167" @default.
- W2053649894 startingPage "159" @default.
- W2053649894 abstract "Abstract The present study addresses the amount of input–output energy utilized in apple production in West Azarbayjan province of Iran. The environmental indices of greenhouse emissions during apple production were determined as another end of this investigation. Finally, the potential of a supervised Artificial Neural Network (ANN) approach was assessed to prognosticate the energy consumption and environmental indices of apple production in the studying location. The associated data for the production of apple were collected randomly from 100 orchardists by using a face to face questionnaire method. Energy inputs included human labor, machinery, diesel fuel, seeds, herbicide, pesticide, chemical fertilizers, manure, irrigation water and electricity. The total input and output energies of 77,064.24 MJ ha−1 and 802,695 MJ ha−1 were obtained for apple production in the study region where the value of total GHG emission was estimated at 1195.79 kg CO2eq ha−1. The results revealed that the total consumed energy input could be classified as direct energy (65.97%), and indirect energy (33.76%) or renewable energy (45.37%) and nonrenewable energy (46.97%). The modeling implementations indicated that the lowest RMSE and MAPE of 0.11 and 0.68 were obtained at 16 neurons. At this number of neurons, the best predicting model was achieved. The R2 values of 0.9879 and 0.9827 were obtained for energy input and environmental indices prediction, respectively. The promising ability of the developed ANN in this study indicates that ANN is powerful and robust tool to be served as a functional and dynamic field of studying interest in the realm of energy consumption modeling." @default.
- W2053649894 created "2016-06-24" @default.
- W2053649894 creator A5072145212 @default.
- W2053649894 creator A5081502910 @default.
- W2053649894 date "2015-01-01" @default.
- W2053649894 modified "2023-09-27" @default.
- W2053649894 title "Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using Artificial Neural Network" @default.
- W2053649894 cites W1964872808 @default.
- W2053649894 cites W1974394235 @default.
- W2053649894 cites W1981347563 @default.
- W2053649894 cites W1987591289 @default.
- W2053649894 cites W1991626857 @default.
- W2053649894 cites W2001061000 @default.
- W2053649894 cites W2017619409 @default.
- W2053649894 cites W2021817214 @default.
- W2053649894 cites W2024126474 @default.
- W2053649894 cites W2025840800 @default.
- W2053649894 cites W2032198469 @default.
- W2053649894 cites W2038936040 @default.
- W2053649894 cites W2040810500 @default.
- W2053649894 cites W2042044583 @default.
- W2053649894 cites W2043959879 @default.
- W2053649894 cites W2047521304 @default.
- W2053649894 cites W2070174008 @default.
- W2053649894 cites W2083986273 @default.
- W2053649894 cites W2089634664 @default.
- W2053649894 cites W2093521297 @default.
- W2053649894 cites W2100836918 @default.
- W2053649894 cites W2123098628 @default.
- W2053649894 cites W2166561096 @default.
- W2053649894 cites W2180630498 @default.
- W2053649894 doi "https://doi.org/10.1016/j.jclepro.2014.10.054" @default.
- W2053649894 hasPublicationYear "2015" @default.
- W2053649894 type Work @default.
- W2053649894 sameAs 2053649894 @default.
- W2053649894 citedByCount "71" @default.
- W2053649894 countsByYear W20536498942015 @default.
- W2053649894 countsByYear W20536498942016 @default.
- W2053649894 countsByYear W20536498942017 @default.
- W2053649894 countsByYear W20536498942018 @default.
- W2053649894 countsByYear W20536498942019 @default.
- W2053649894 countsByYear W20536498942020 @default.
- W2053649894 countsByYear W20536498942021 @default.
- W2053649894 countsByYear W20536498942022 @default.
- W2053649894 countsByYear W20536498942023 @default.
- W2053649894 crossrefType "journal-article" @default.
- W2053649894 hasAuthorship W2053649894A5072145212 @default.
- W2053649894 hasAuthorship W2053649894A5081502910 @default.
- W2053649894 hasConcept C119599485 @default.
- W2053649894 hasConcept C127413603 @default.
- W2053649894 hasConcept C139719470 @default.
- W2053649894 hasConcept C144024400 @default.
- W2053649894 hasConcept C144027150 @default.
- W2053649894 hasConcept C154945302 @default.
- W2053649894 hasConcept C162324750 @default.
- W2053649894 hasConcept C175605778 @default.
- W2053649894 hasConcept C18903297 @default.
- W2053649894 hasConcept C2778348673 @default.
- W2053649894 hasConcept C2780165032 @default.
- W2053649894 hasConcept C30772137 @default.
- W2053649894 hasConcept C32198211 @default.
- W2053649894 hasConcept C36289849 @default.
- W2053649894 hasConcept C39432304 @default.
- W2053649894 hasConcept C41008148 @default.
- W2053649894 hasConcept C47737302 @default.
- W2053649894 hasConcept C50644808 @default.
- W2053649894 hasConcept C548081761 @default.
- W2053649894 hasConcept C86803240 @default.
- W2053649894 hasConcept C87717796 @default.
- W2053649894 hasConceptScore W2053649894C119599485 @default.
- W2053649894 hasConceptScore W2053649894C127413603 @default.
- W2053649894 hasConceptScore W2053649894C139719470 @default.
- W2053649894 hasConceptScore W2053649894C144024400 @default.
- W2053649894 hasConceptScore W2053649894C144027150 @default.
- W2053649894 hasConceptScore W2053649894C154945302 @default.
- W2053649894 hasConceptScore W2053649894C162324750 @default.
- W2053649894 hasConceptScore W2053649894C175605778 @default.
- W2053649894 hasConceptScore W2053649894C18903297 @default.
- W2053649894 hasConceptScore W2053649894C2778348673 @default.
- W2053649894 hasConceptScore W2053649894C2780165032 @default.
- W2053649894 hasConceptScore W2053649894C30772137 @default.
- W2053649894 hasConceptScore W2053649894C32198211 @default.
- W2053649894 hasConceptScore W2053649894C36289849 @default.
- W2053649894 hasConceptScore W2053649894C39432304 @default.
- W2053649894 hasConceptScore W2053649894C41008148 @default.
- W2053649894 hasConceptScore W2053649894C47737302 @default.
- W2053649894 hasConceptScore W2053649894C50644808 @default.
- W2053649894 hasConceptScore W2053649894C548081761 @default.
- W2053649894 hasConceptScore W2053649894C86803240 @default.
- W2053649894 hasConceptScore W2053649894C87717796 @default.
- W2053649894 hasLocation W20536498941 @default.
- W2053649894 hasOpenAccess W2053649894 @default.
- W2053649894 hasPrimaryLocation W20536498941 @default.
- W2053649894 hasRelatedWork W1150799059 @default.
- W2053649894 hasRelatedWork W138147639 @default.
- W2053649894 hasRelatedWork W1976741362 @default.
- W2053649894 hasRelatedWork W2389869350 @default.
- W2053649894 hasRelatedWork W2783075509 @default.