Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053676985> ?p ?o ?g. }
- W2053676985 endingPage "9381" @default.
- W2053676985 startingPage "9373" @default.
- W2053676985 abstract "Activated epidermal growth factor receptor (EGFR) continues to signal in the early endosome, but how this signaling process is regulated is less well understood. Here we describe a protein complex consisting of TIP30, endophilin B1, and acyl-CoA synthetase long chain family member 4 (ACSL4) that interacts with Rab5a and regulates EGFR endocytosis and signaling. These proteins are required for the proper endocytic trafficking of EGF-EGFR. Knockdown of TIP30, ACSL4, endophilin B1, or Rab5a in human liver cancer cells or genetic knock-out of Tip30 in mouse primary hepatocytes results in the trapping of EGF-EGFR complexes in early endosomes, leading to delayed EGFR degradation and prolonged EGFR signaling. Furthermore, we show that Rab5a colocalizes with vacuolar (H+)-ATPases (V-ATPases) on transport vesicles. The TIP30 complex facilitates trafficking of Rab5a and V-ATPases to EEA1-positve endosomes in response to EGF. Together, these results suggest that this TIP30 complex regulates EGFR endocytosis by facilitating the transport of V-ATPases from trans-Golgi network to early endosomes. Activated epidermal growth factor receptor (EGFR) continues to signal in the early endosome, but how this signaling process is regulated is less well understood. Here we describe a protein complex consisting of TIP30, endophilin B1, and acyl-CoA synthetase long chain family member 4 (ACSL4) that interacts with Rab5a and regulates EGFR endocytosis and signaling. These proteins are required for the proper endocytic trafficking of EGF-EGFR. Knockdown of TIP30, ACSL4, endophilin B1, or Rab5a in human liver cancer cells or genetic knock-out of Tip30 in mouse primary hepatocytes results in the trapping of EGF-EGFR complexes in early endosomes, leading to delayed EGFR degradation and prolonged EGFR signaling. Furthermore, we show that Rab5a colocalizes with vacuolar (H+)-ATPases (V-ATPases) on transport vesicles. The TIP30 complex facilitates trafficking of Rab5a and V-ATPases to EEA1-positve endosomes in response to EGF. Together, these results suggest that this TIP30 complex regulates EGFR endocytosis by facilitating the transport of V-ATPases from trans-Golgi network to early endosomes. Receptor-mediated endocytosis is a mechanism utilized by eukaryotic cells to rapidly take up specific nutrients and reduce receptor signaling at the plasma membrane. Internalized ligand-receptor complexes are enclosed in early endosomes, also called sorting endosomes, where they are either recycled or delivered to lysosomes for destruction (1Mellman I. Annu. Rev. Cell Dev. Biol. 1996; 12: 575-625Crossref PubMed Scopus (1338) Google Scholar, 2Maxfield F.R. McGraw T.E. Nat. Rev. Mol. Cell Biol. 2004; 5: 121-132Crossref PubMed Scopus (1494) Google Scholar). Signaling receptors continue to activate certain downstream pathways from early endosomes (3Miaczynska M. Pelkmans L. Zerial M. Curr. Opin. Cell Biol. 2004; 16: 400-406Crossref PubMed Scopus (457) Google Scholar, 4Polo S. Di Fiore P.P. Cell. 2006; 124: 897-900Abstract Full Text Full Text PDF PubMed Scopus (227) Google Scholar, 5Sorkin A. von Zastrow M. Nat. Rev. Mol. Cell Biol. 2009; 10: 609-622Crossref PubMed Scopus (854) Google Scholar, 6Murphy J.E. Padilla B.E. Hasdemir B. Cottrell G.S. Bunnett N.W. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 17615-17622Crossref PubMed Scopus (276) Google Scholar) until ligand-receptor complexes dissociate due to lower luminal pH created by vacuolar V-ATPases, 2The abbreviations used are: V-ATPase, vacuolar (H+)-ATPase; EGFR, epidermal growth factor receptor; Endo B1, endophilin B1; TfR, transferrin receptor. the major proton pump responsible for endosomal and lysosomal acidification (2Maxfield F.R. McGraw T.E. Nat. Rev. Mol. Cell Biol. 2004; 5: 121-132Crossref PubMed Scopus (1494) Google Scholar, 7Yamashiro D.J. Tycko B. Fluss S.R. Maxfield F.R. Cell. 1984; 37: 789-800Abstract Full Text PDF PubMed Scopus (417) Google Scholar, 8Backer J.M. Kahn C.R. White M.F. J. Biol. Chem. 1990; 265: 14828-14835Abstract Full Text PDF PubMed Google Scholar, 9Nishi T. Forgac M. Nat. Rev. Mol. Cell Biol. 2002; 3: 94-103Crossref PubMed Scopus (999) Google Scholar). Inactivation of V-ATPases blocks the transition from early to late endosomes (10Clague M.J. Urbé S. Aniento F. Gruenberg J. J. Biol. Chem. 1994; 269: 21-24Abstract Full Text PDF PubMed Google Scholar). Therefore, the proper endosomal targeting and activity of V-ATPases contribute to the tight regulation of both endocytic trafficking and receptor endosomal signaling. Acidic luminal pH in early endosomes is the driving force for receptors to release their ligands, such as insulin and low density lipoprotein (LDL) (1Mellman I. Annu. Rev. Cell Dev. Biol. 1996; 12: 575-625Crossref PubMed Scopus (1338) Google Scholar, 2Maxfield F.R. McGraw T.E. Nat. Rev. Mol. Cell Biol. 2004; 5: 121-132Crossref PubMed Scopus (1494) Google Scholar). On the basis of individually tracking EGF and EGFR, it has long been considered that EGFR travels together with EGF until they reach lysosomes (11Carpenter G. Cohen S. Annu. Rev. Biochem. 1979; 48: 193-216Crossref PubMed Google Scholar, 12Carpenter G. Cohen S. J. Cell Biol. 1976; 71: 159-171Crossref PubMed Scopus (863) Google Scholar). However, it is unclear whether they remain bound to each other on the way to lysosomes. Recent studies have suggested that EGFR is inactivated before being degraded and that EGF dissociates from EGFR prior to lysosomal transfer (6Murphy J.E. Padilla B.E. Hasdemir B. Cottrell G.S. Bunnett N.W. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 17615-17622Crossref PubMed Scopus (276) Google Scholar, 13Authier F. Chauvet G. FEBS Lett. 1999; 461: 25-31Crossref PubMed Scopus (21) Google Scholar, 14Burke P. Schooler K. Wiley H.S. Mol. Biol. Cell. 2001; 12: 1897-1910Crossref PubMed Scopus (297) Google Scholar, 15Umebayashi K. Stenmark H. Yoshimori T. Mol. Biol. Cell. 2008; 19: 3454-3462Crossref PubMed Scopus (84) Google Scholar). Rab5a is a small GTPase that regulates early endosome fusion in vitro (16Gorvel J.P. Chavrier P. Zerial M. Gruenberg J. Cell. 1991; 64: 915-925Abstract Full Text PDF PubMed Scopus (860) Google Scholar), motility of early endosomes on microtubules (17Nielsen E. Severin F. Backer J.M. Hyman A.A. Zerial M. Nat. Cell Biol. 1999; 1: 376-382Crossref PubMed Scopus (396) Google Scholar), and the traffic between endosomes and lysosomes (18Rosenfeld J.L. Moore R.H. Zimmer K.P. Alpizar-Foster E. Dai W. Zarka M.N. Knoll B.J. J. Cell Sci. 2001; 114: 4499-4508Crossref PubMed Google Scholar). Deletion of Rab5a in cells inhibits the transport of EGFR from early endosomes to lysosomes and consequently causes sustained EGFR signaling and delayed EGFR degradation (19Chen P.I. Kong C. Su X. Stahl P.D. J. Biol. Chem. 2009; 284: 30328-30338Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar). Despite its importance to endocytic transport, how Rab5a mediates down-regulation of receptor signaling remains unclear. TIP30, also known as HTATIP2 or CC3 (20Shtivelman E. Oncogene. 1997; 14: 2167-2173Crossref PubMed Scopus (106) Google Scholar, 21Xiao H. Tao Y. Greenblatt J. Roeder R.G. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 2146-2151Crossref PubMed Scopus (70) Google Scholar), is a tumor suppressor that has been demonstrated to act as a transcription cofactor to repress transcription in the nucleus (22Jiang C. Ito M. Piening V. Bruck K. Roeder R.G. Xiao H. J. Biol. Chem. 2004; 279: 27781-27789Abstract Full Text Full Text PDF PubMed Scopus (61) Google Scholar, 23Zhao J. Lu B. Xu H. Tong X. Wu G. Zhang X. Liang A. Cong W. Dai J. Wang H. Wu M. Guo Y. Hepatology. 2008; 48: 265-275Crossref PubMed Scopus (44) Google Scholar) and to localize at the nuclear envelope to block nuclear importing (24King F.W. Shtivelman E. Mol. Cell. Biol. 2004; 24: 7091-7101Crossref PubMed Scopus (44) Google Scholar). However, TIP30 also localizes in the cytoplasm, where its function is not known (25Ito M. Jiang C. Krumm K. Zhang X. Pecha J. Zhao J. Guo Y. Roeder R.G. Xiao H. Cancer Res. 2003; 63: 8763-8767PubMed Google Scholar, 26Lee L.W. Zhang D.H. Lee K.T. Koay E.S. Hewitt R.E. Ann. Acad. Med. Singapore. 2004; 33: S30-S32PubMed Google Scholar, 27Tong X. Li K. Luo Z. Lu B. Liu X. Wang T. Pang M. Liang B. Tan M. Wu M. Zhao J. Guo Y. Am. J. Pathol. 2009; 174: 1931-1939Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 28Zhao J. Ni H. Ma Y. Dong L. Dai J. Zhao F. Yan X. Lu B. Xu H. Guo Y. Hum. Pathol. 2007; 38: 293-298Crossref PubMed Scopus (45) Google Scholar). Here we report that a newly identified protein complex containing TIP30, ACSL4, and Endo B1 drives EGF-EGFR complex endocytic trafficking by facilitating the localization of Rab5a and V-ATPases to early endosomes. Rab5a and V-ATPase reside in vesicles devoid of the early endosomal marker EEA1 and the recycling endosomal marker transferrin receptor (TfR), suggesting that these vesicles are post-trans-Golgi network vesicles responsible for the transport of integral membrane protein V-ATPases. Our data suggest a mechanism by which Rab5a in cooperation with other proteins in the TIP30 complex transports V-ATPases to early endosomes and induces the dissociation of EGF from EGFR and the termination of EGFR endosomal signaling. PLC/PRF/5 and HepG2 cell lines were purchased from ATCC. Cells were cultured in DMEM (Invitrogen) supplemented with 10% fetal bovine serum and penicillin/streptomycin (Invitrogen) at 37 °C in 5% CO2. The pSin-EF2 vector (29Yu J. Vodyanik M.A. Smuga-Otto K. Antosiewicz-Bourget J. Frane J.L. Tian S. Nie J. Jonsdottir G.A. Ruotti V. Stewart R. Slukvin I.I. Thomson J.A. Science. 2007; 318: 1917-1920Crossref PubMed Scopus (8211) Google Scholar) was converted to destination vectors by cloning the Gateway cassette RfA (reading frame A, Invitrogen) with either N-terminal or C-terminal HA tag, CFP, EYFP, or DsRed fluorescent proteins into blunted SpeI and EcoRI sites. Human Rab5a, ACSL4, and EndoB1 were amplified using RT-PCR from mRNA isolated from PLC/PRF/5 cells. TIP30 was subcloned from pFlag7-TIP30 and pFlag7-TIP30M (30Xiao H. Palhan V. Yang Y. Roeder R.G. EMBO J. 2000; 19: 956-963Crossref PubMed Scopus (90) Google Scholar). For bimolecular fluorescence complementation assays, VC155 and VN173 (31Hu C.D. Grinberg A.V. Kerppola T.K. Coligan J.E. Dunn B.M. Speicher D.W. Wingfield P.T. Current Protocols in Protein Science. John Wiley & Sons, Inc., Somerset, NJ2005: 19.10.1-19.10.2Google Scholar) were cloned into pCDNA3.1 and pSin-EF2, respectively, and both were also converted to destination vectors. Lentiviral plasmids producing shRNAs against TIP30, Rab5a, and ACSL4 were from Sigma-Aldrich. Lentiviral plasmids for shRNAs against Endo B1 were from Open Biosystems. HA (HA-7), β-actin (AC-15), and Endo B1 antibodies were from Sigma-Aldrich. AKT, AKT-pS473, EEA1, and Rab5a antibodies were from Cell Signaling. EGFR-pY845, TfR, Alexa Fluor 546 goat anti-mouse, and Alexa Fluor 594 goat anti-rabbit antibodies were from Invitrogen. Anti-EGFR antibody was from Millipore. ATP6V1H antibody was from Santa Cruz Biotechnology. LAMP1 antibody was purchased from The Developmental Studies Hybridoma Bank at University of Iowa. PLC/PRF/5 cells were infected by lentiviruses producing shRNA against indicated genes. Cells were pooled after being selected for 4 days with 2 μg/ml puromycin. At least two confirmed knockdown pools for each targeted gene were used for the experiments in FIGURE 4, FIGURE 5, FIGURE 6, FIGURE 7, FIGURE 8. Control and knockdown cells were cultured on cover glass and were serum-starved for 24 h in DMEM. Wild type and Tip30−/− primary hepatocytes were starved for 3 h. Cells were incubated with 100 ng/ml Alexa-488-conjugated EGF (Alexa488-EGF) (Invitrogen) and 20 μg/ml cycloheximide on ice for 1 h and then were washed four times with cold PBS and incubated in DMEM with 20 μg/ml cycloheximide at 37 °C for different time periods. Cells were fixed in 4% paraformaldehyde in PBS for 15 min, permeabilized with 0.1% Triton X-100 for 2 min, and stained for the indicated proteins. Images were obtained with a Zeiss LSM 510 Meta confocal microscope (Carl Zeiss) using Plan-Apochromat 63×/1.40 oil objective. Pinhole size was set to 1 airy unit for all channels. All images are representative single optical sections. To determine EGFR stability upon EGF treatment, cells were cultured in 6-cm dishes and treated as above except that unlabeled EGF was used, and the cells were collected for immunoblot at various time points.FIGURE 7Rab5a vesicles carry V-ATPases and are devoid of EEA1 and TfR. A, EGFR-negative Rab5a vesicles are not early endosomes. Wild type mouse primary hepatocytes were immunostained for EEA1 (red) and Rab5a (green) after 30 min of EGF (blue) internalization. Scale bar, 10 μm. B, TfR partially colocalizes with Rab5a. PLC/PRF/5 cells were immunostained for TfR (red) and Rab5a (green) after 10 min of EGF (blue) internalization. Scale bar, 10 μm. C, V-ATPases colocalize with Rab5a in transport vesicles. TIP30 knockdown (KD) cells were immunostained for V-ATPase (red) and Rab5a (green) after 30 min of EGF (blue) internalization. Scale bar, 10 μm.View Large Image Figure ViewerDownload Hi-res image Download (PPT)FIGURE 6TIP30, ACSL4, and Endo B1 are required for the localization of Rab5a to early endosomes. A, knockdown (KD) of TIP30, ACSL4, or Endo B1 inhibits the localization of Rab5a to early endosomes. Control cells and TIP30, ACSL4, or Endo B1 knockdown cells were subjected to EGFR internalization analysis. 60 min after internalization of Alexa488-EGF (blue), cells were immunostained for EGFR (red) and Rab5a (green). Nucleus is stained by DAPI (gray). Results are typical and representative of three experiments on cells from two different shRNAs. The boxed areas are magnified. Scale bars, 10 μm. B, Tip30 deletion in primary hepatocytes inhibits the recruitment of Rab5a to early endosomes. Primary hepatocytes were stained for EGFR (red) and Rab5a (green) after 60 min of EGF (blue) internalization. The boxed areas are magnified. Scale bars, 10 μm. C, quantitative analysis of Rab5a-EGFR colocalization after 60 min of EGF internalization was performed as described in the legend for Fig. 2. Data represent means ± S.E. *, p < 0.05, **, p < 0.01, relative to control or wild type cells; Student's t test.View Large Image Figure ViewerDownload Hi-res image Download (PPT)FIGURE 5TIP30 and Rab5a depletion delays the exit of EGF from early endosomes. A, knockdown (KD) of TIP30 or Rab5a causes delayed exit of Alexa488-EGF from early endosomes. Cells expressing control shRNA or shRNA against TIP30 or Rab5a were subjected to EGFR internalization analysis. After internalization of Alexa488-EGF (blue) for 60 min, cells were fixed and double-immunostained for EGFR (red) and EEA1 (green). Nucleus was stained by DAPI (gray). Magenta results from overlap between red and blue. Results are representative of at least three independent experiments on cells expressing two different shRNAs. The boxed areas are magnified. Scale bars, 10 μm. B, deletion of Tip30 in mouse primary hepatocytes leads to trapping of EGF in early endosomes. Wild type and Tip30−/− primary hepatocytes were subjected to the same EGFR internalization analysis as described in A. The boxed areas are magnified. Scale bars, 10 μm. C, quantitative analysis of EGF-EGFR colocalization 60 min after EGF internalization. 60 cells represented by Fig. 5, A and B, and Fig. 6A in each group were analyzed using MBF_ImageJ. Pearson's colocalization coefficients were calculated and converted to percentages. Data represent means ± S.E. *, p < 0.05, **, p < 0.01, relative to control or wild type cells; Student's t test. D, EGF exits endosomes in LAMP1-negative vesicles. Cells were stained for EGFR and LAMP1 60 min after EGF internalization. Scale bar, 10 μm.View Large Image Figure ViewerDownload Hi-res image Download (PPT)FIGURE 4TIP30, Rab5a, ACSL4, and Endo B1 promote the endocytic down-regulation of EGFR. A–E, knockdown of TIP30, Rab5a, ACSL4, or Endo B1 results in delayed EGFR degradation and sustained EGFR signaling. Control PLC/PRF/5 cells (A), TIP30 (B), Rab5a (C), Endo B1 (D), and ACSL4 (E) knockdown cells were incubated with 100 ng/ml EGF after being serum-starved for 24 h and then were washed with cold PBS and incubated with cycloheximide at 37 °C. Cells were collected at various time points after EGF internalization and subjected to immunoblot analysis with the indicated antibodies. Results are typical and representative of experiments on cells from two different shRNAs. F, quantification of EGFR protein levels in A–E using Odyssey 2.1 software. KD, knockdown. G, deletion of Tip30 in mouse primary hepatocytes leads to delayed EGFR degradation and sustained EGFR signaling. Primary hepatocytes were isolated from wild type and Tip30−/− mice. Endocytosis-induced EGFR degradation was analyzed as described in A–E. H, quantification of EGFR protein levels in G using Odyssey 2.1 software.View Large Image Figure ViewerDownload Hi-res image Download (PPT) PLC/PRF/5 cells were transfected with indicated constructs. Whole cell extracts were prepared from pooled stable clones as described previously with modifications (32Stringer K.F. Ingles C.J. Greenblatt J. Nature. 1990; 345: 783-786Crossref PubMed Scopus (408) Google Scholar). Briefly, cells were homogenized by 20 strokes in two packed cell pellet volumes of buffer A (10 mm Hepes, pH 7.9, 10 mm KCl, 0.5 mm DTT, protease inhibitor mixture) using a Kontes homogenizer (B pestle). Another 20 strokes were applied after adding 1.5 cell pellet volumes of buffer B (50 mm Hepes, pH 7.9, 0.6 mm EDTA, 1.5 mm DTT, 1.26 m NaCl, 75% glycerol) followed by centrifugation at 100,000 × g for 1 h. The supernatant was dialyzed against BC300 (20 mm Hepes, pH 7.9, 20% glycerol, 0.2 mm EDTA, 0.5 mm DTT, 0.3 m KCl) (33Chiang C.M. Roeder R.G. Science. 1995; 267: 531-536Crossref PubMed Scopus (352) Google Scholar) and centrifuged at 15,000 rpm for 20 min followed by rotating with anti-HA agarose beads (Roche Diagnostics) overnight at 4 °C. The beads were centrifuged and extensively washed using BC300 buffer. Immunoprecipitates were eluted with HA peptides (Roche Diagnostics), denatured, resolved on SDS-PAGE, and subjected to silver stain, immunoblot, or LC-MS/MS spectral analyses (The MSU Proteomics Facility, Michigan State University). Primary hepatocytes were isolated from 8-week-old wild type and Tip30−/− mice as described (34Seglen P.O. Exp. Cell Res. 1972; 74: 450-454Crossref PubMed Scopus (394) Google Scholar) with modifications. Briefly, the inferior vena cava was cannulated, and the liver was first perfused in situ with an oxygenated Krebs-Ringer buffer (115 mm NaCl, 5.9 mm KCl, 25 mm NaHCO3, 10 mm glucose, 20 mm Hepes, pH 7.4) with 0.1 mm EGTA at 37 °C followed by perfusion with oxygenated Krebs-Ringer buffer containing 0.25 mm CaCl2 and 20 μg/ml Liberase Blendzyme 3 (Roche Applied Science). Liver was removed and then gently minced in ice-cold Krebs-Ringer buffer. Liver cell suspension was then filtered with Falcon cell strainers (BD Biosciences) and washed three times by centrifugation at 50 × g for 2 min at 4 °C. Cell viability was determined by trypan blue exclusion. Cells were cultured in DMEM (with 10% FBS and 1× penicillin/streptomycin) at 37 °C with 5% CO2. To identify cytosolic proteins that interact with TIP30, we stably expressed TIP30 protein with an HA tag fused to its C-terminal end (TIP30-HA) in human hepatocellular carcinoma cells (PLC/PRF/5). Co-immunoprecipitation assays were performed using whole cell extracts generated from cells expressing TIP30-HA or control vector. Mass spectrometric analysis identified Rab5a, ACSL4, and EndoB1 (also known as Bif-1) in the immunoprecipitates. Association of these proteins with TIP30-HA was confirmed by immunoblot analysis using specific antibodies (Fig. 1A). The interactions were further confirmed by reciprocal immunoprecipitation. When Rab5a, Endo B1, or ACSL4 were HA-tagged, each could be specifically co-immunoprecipitated with endogenous TIP30 and the other three endogenous proteins (Fig. 1B). Although Endo B1 failed to be immunoprecipitated with ACSL4-HA, possibly due to the interference of HA at its C terminus, endogenous ACSL4 was detected in Endo B1-HA immunoprecipitates. Notably, Rab5a was co-immunoprecipitated with these proteins in the presence of 0.2 mm EDTA, implying that the interaction is independent of its nucleotide binding status. We next used bimolecular fluorescence complementation analysis (31Hu C.D. Grinberg A.V. Kerppola T.K. Coligan J.E. Dunn B.M. Speicher D.W. Wingfield P.T. Current Protocols in Protein Science. John Wiley & Sons, Inc., Somerset, NJ2005: 19.10.1-19.10.2Google Scholar) to visualize the association of TIP30 with these proteins in living cells. We observed that co-expression of TIP30-VC155 with VN173-Rab5a, ACSL4-VN173, or Endo B1-VN173 in cells reconstituted fluorescence, whereas co-expression of TIP30-VC155 and control VN173 did not (Fig. 1C), indicating that TIP30 directly or indirectly interacts with these proteins in living cells. To determine whether endogenous TIP30 associates with endogenous ACSL4 and EndoB1, we did glycerol gradient sedimentation and observed that these proteins co-sedimented at a position between the 150- and 443-kDa marker proteins in a 15–35% glycerol gradient (Fig. 2A). The majority of TIP30 and part of Endo B1 appeared in fractions containing proteins smaller than 66 kDa, suggesting that these two proteins may exist mainly as a heterodimer or as separated homodimers. An in vitro binding assay showed that bacterially expressed recombinant ACSL4 and Endo B1 were able to directly bind purified baculovirus-expressed recombinant TIP30 (Fig. 2B). These results indicate that TIP30, ACSL4, and Endo B1 may form a protein complex to interact with Rab5a. Rab5a colocalizes with EGFR in endosomes in response to EGF (35Lakadamyali M. Rust M.J. Zhuang X. Cell. 2006; 124: 997-1009Abstract Full Text Full Text PDF PubMed Scopus (436) Google Scholar, 36Leonard D. Hayakawa A. Lawe D. Lambright D. Bellve K.D. Standley C. Lifshitz L.M. Fogarty K.E. Corvera S. J. Cell Sci. 2008; 121: 3445-3458Crossref PubMed Scopus (88) Google Scholar). To test whether TIP30 is also targeted to endosomes, we co-expressed TIP30-CFP and EGFR-DsRed fusion proteins and examined their localization in HepG2 cells lacking detectable endogenous TIP30 and EGFR. Confocal microscopy analysis showed that TIP30-CFP partially colocalized with EGF and EGFR-DsRed in endosomes 10 min after cells were treated with Alexa-647-conjugated EGF (Alexa647-EGF; Fig. 2C), suggesting that TIP30 was also targeted to endosomes. Consistently, immunostaining of endogenous TIP30 and EGFR revealed that TIP30 was partially localized to EGF-EGFR-positive endosomes (Fig. 2D). Taken together, our protein-protein interaction and colocalization studies suggest that TIP30, ACSL4, and Endo B1 form a protein complex and may function together with Rab5a on the endocytic pathway. Knockdown of Rab5a expression in HeLa cells retards EGFR transport from early endosomes to late endosomes and delays the degradation of EGFR (19Chen P.I. Kong C. Su X. Stahl P.D. J. Biol. Chem. 2009; 284: 30328-30338Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar). The interaction of TIP30, ACSL4, and Endo B1 with Rab5a raises the possibility that these proteins may also function in endocytic pathways. We performed EGFR internalization analysis to investigate whether the inhibition of TIP30, ACSL4, or Endo B1 affects the endocytic down-regulation of EGFR. Instead of continuous incubation with EGF, serum-starved cells were first incubated with EGF on ice to allow for binding of ligand to receptors, and then they were washed to remove unbound EGF before being moved to 37 °C for internalization. Nascent protein synthesis was blocked by cycloheximide in the culture medium. This approach eliminates the interference from continuous ligand entrance and new receptor synthesis, thus enabling us to monitor both the traffic and the fate of EGF-EGFR complexes. We found that knockdown of TIP30, Rab5a, ACSL4, or Endo B1 in PLC/PRF/5 cells (Fig. 3, A–D) resulted in a slower reduction of total EGFR protein levels (Fig. 4, A–F). To corroborate these findings, we further examined whether phosphorylation of EGFR at Tyr-845 (EGFR-pY845) and phosphorylation of AKT at Ser-473 (AKT-pS473), a downstream target of EGFR signaling, were affected. Remarkably, the levels of EGFR-pY845 and AKT-pS473 were sustained much longer in TIP30, ACSL4, Endo B1, or Rab5a knockdown cells than in control cells (Fig. 4, A–F). Of note, Akt phosphorylation was rapidly increased followed by a decline and then increased again after a 3-h internalization (Fig. 4, A–D). Although the exact mechanism to explain this phenomenon remains to be tested, one can envisage that it may reflect the autonomic balance of kinase and phosphatase activities for Akt in cells. To assess the effect of TIP30 deletion on EGFR endocytic down-regulation in normal cells and to exclude off-target effects of shRNAs, we performed EGFR internalization analysis using primary hepatocytes isolated from wild type and Tip30 knock-out mouse littermates. Deletion of Tip30 in primary hepatocytes delayed EGF-induced EGFR degradation (Fig. 4, G and H), and the phosphorylation of EGFR at Tyr-845 and Akt at Ser-473 was higher and sustained longer in Tip30−/− hepatocytes than in wild type hepatocytes. Together, these data provide strong evidence that TIP30, ACSL4, Endo B1, and Rab5a not only physically associate but also function together in promoting the endocytic down-regulation of EGFR protein level and signaling. An early study showed that EGF dissociates from EGFR at later stages of endocytosis (37Carter R.E. Sorkin A. J. Biol. Chem. 1998; 273: 35000-35007Abstract Full Text Full Text PDF PubMed Scopus (188) Google Scholar). Moreover, it has been suggested that EGFR is inactivated before being transferred to lysosomes and degraded (6Murphy J.E. Padilla B.E. Hasdemir B. Cottrell G.S. Bunnett N.W. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 17615-17622Crossref PubMed Scopus (276) Google Scholar, 13Authier F. Chauvet G. FEBS Lett. 1999; 461: 25-31Crossref PubMed Scopus (21) Google Scholar, 14Burke P. Schooler K. Wiley H.S. Mol. Biol. Cell. 2001; 12: 1897-1910Crossref PubMed Scopus (297) Google Scholar, 15Umebayashi K. Stenmark H. Yoshimori T. Mol. Biol. Cell. 2008; 19: 3454-3462Crossref PubMed Scopus (84) Google Scholar). To test whether depletion of TIP30, ACSL4, Endo B1, or Rab5a affects EGF dissociation from EGFR, we simultaneously tracked Alexa488-EGF and EGFR at different time points after internalization using confocal microscopy. We found that fluorescent EGF partially colocalizes with EGFR and Rab5a in control cells after 15 and 30 min of internalization (supplemental Fig. S1A). Interestingly, Alexa488-EGF exited in membrane-bound vesicles from EGFR-positive endosomes in control cells after 60 min of internalization (Fig. 5A). In contrast, the majority of EGF remained colocalized with EGFR in TIP30 or Rab5a knockdown cells (control cells, 7 ± 3%; TIP30 knockdown cells, 36 ± 4%; Rab5a knockdown cells, 46 ± 5%; n = 60, p < 0.01 versus control cells; Fig. 5, A and C). The EGF vesicles were devoid of early endosomal markers EEA1 and Rab5a, as well as late endosomal and lysosomal marker LAMP1 (Fig. 5D), indicating that they are neither early/late endosomes nor lysosomes. We next performed EGFR internalization analysis using wild type and Tip30−/− primary hepatocytes. Consistently, Tip30 deletion increased the colocalization of EGF and EGFR nearly 2-fold (wild type primary hepatocytes, 15 ± 2%; Tip30−/− primary hepatocytes, 29 ± 2%; n = 20, p < 0.01; Fig. 5, B and C). Likewise, knockdown of ACSL4 or Endo B1 expression also increased the colocalization of EGF and EGFR (ACSL4 knockdown cells, 40 ± 8%; Endo B1 knockdown cells, 23 ± 5%; n = 60, p < 0.05 versus control cells; Figs. 5C and 6A). The majority of EGF colocalized with EGFR even after 120 min of internalization in knockdown and Tip30−/− cells (supplemental Fig. S1, A–C). Taken together, these results suggest that TIP30, ACSL4, Endo B1, and Rab5a are involved in promoting EGF dissociation from EGFR during endocytic trafficking. Endocytic vesicles gain Rab5a dynamically mostly by membrane fusion with Rab5-positive endosomes in the course of cargo transport (38Rink J. Ghigo E. Kalaidzidis Y. Zerial M. Cell. 2005; 122: 735-749Abstract Full Text Full Text PDF PubMed Scopus (1207) Google Scholar). This is further supported by the observation that Rab5a is mainly localized on numerous vesicles in the perinuclear region of cells under steady state condition and is rapidly recruited to early endocytic vesicles at the cell periphery in response to EGF (35Lakadamyali M. Rust M.J. Zhuang X. Cell. 2006; 124: 997-1009Abstract Full Text Full Text PDF PubMed Scopus (436) Google Scholar, 36Leonard D. Hayakawa A. Lawe D. Lambright D. Bellve K.D. Standley C. Lifshitz L.M. Fogarty K.E. Corvera S. J. Cell Sci. 2008; 121: 3445-3458Crossref PubMed Scopus (88) Google Scholar). The similar effects of TIP30 and Rab5a knockdown on EGFR endocytosis prompted us to test whether TIP30 is involved in the loading of Rab5a on early endosomes. In control cells, Rab5a appeared in EGFR-positive endosomes from which EGF had exited after 60 min of EGF internalization (Fig. 6A). By contrast, the colocalization of Rab5a and EGFR was significantly decreased in TIP30 knockdown cells (control cells, 72 ± 11%; TIP30 knockdown cells, 18 ± 5%; n = 60, p < 0.01; Fig. 6, A and C) and Tip30−/− primary hepatocytes (wild type hepatocytes, 34 ± 8%; Tip30−/− hepatocytes, 12 ± 5%; n = 20, p < 0.05; Fig. 6, B and C). Similar results were obtained with ACSL4 or Endo B1 knockdown cells (ACSL4 knockdown cells, 3 ± 2%; Endo B1 knockdown cells, 27 ± 4%; n = 60, p < 0.01 versus control cells; Fig. 6, A and C). Interestingly, there were a few Rab5a-positive early endosomes in Endo B1 knockdown cells, which was probably the result of incomplete knockdown. However, these Rab5a-positive endosomes appeared different from those in control cells. They did not release EGF even after 120 min of internalization (supplemental Fig. S1B), indicating that Endo B1 has an additional function after Rab5a recruitment. This provides a possible explanation for the observation that Endo B1 knockdown cells have less EGF-EGFR colocalization and more Rab5a-EGFR overlap but have longer lasting EGFR stability when compared with TIP30 and ACSL4 knockdown cells (Figs. 4, A–F, 5C, and 6C). Together, these results indicate that TIP30, ACSL4, and Endo B1 promote efficient Rab5a localization to early endosomes. Intriguingly, we noted that Rab5a appeared in vesicles when it was not localized to EGFR-positive endosomes (Fig. 6, A and B). To further characterize those EGFR-negative Rab5a vesicles, we co-stained EEA1 and Rab5a in wild type mouse primary hepatocytes 30 min after EGF internalization. The EGFR-negative Rab5a vesicles were also negative for EEA1 and TfR (Fig. 7, A and B), suggesting that they are neither plasma membrane-derived endocytic vesicles nor recycling endosomes, but likely transporting vesicles that originate from the trans-Golgi network. Dissociation of ligand-receptor complexes inside endosomes is caused by the low luminal pH created by V-ATPases. Our previously presented results showed that lack of Rab5a in early endosomes was concomitant with delayed EGF-EGFR dissociation induced by loss of TIP30 or its interacting proteins. Rab5a did not coexist with EGF in EGFR-positive endosomes, suggesting that Rab5a vesicles may deliver V-ATPases to early endosomes to drive EGF-EGFR dissociation. To test this hypothesis, we examined the intracellular localization of V-ATPases by staining for the regulatory subunit H (ATP6V1H). ATP6V1H-positive staining was observed in Rab5a vesicles lacking EGF and EGFR in TIP30 knockdown cells (Fig. 7C). Significant reduction of ATP6V1H localization to EGFR-positive endosomes was observed in TIP30, Rab5a, ACSL4, or Endo B1 knockdown cells (control cells, 46 ± 7%; TIP30 knockdown cells, 25 ± 4%; Rab5a knockdown cells, 19 ± 1%; ACSL4 knockdown cells, 19 ± 2%; Endo B1 knockdown cells, 21 ± 1%; n = 60, p < 0.05 versus control cells; Fig. 8, A and C) and in Tip30−/− primary hepatocytes (wild type hepatocytes, 61 ± 4%; Tip30−/− hepatocytes, 23 ± 6%; n = 20, p < 0.01; Fig. 8, B and C). Moreover, in live PLC/PRF/5 cells co-expressing EYFP-Rab5a and ATP6V1H-DsRed, EGF-positive endosomes fused with Rab5a-ATP6V1H vesicles at 11 min after EGF internalization and released Alexa647-EGF 3 min after the merge (Fig. 8D). To determine whether mislocalization of V-ATPases affects endosomal acidification, we monitored endosomal pH after pHrodo-EGF:Alexa647-EGF (7:3) internalization (39Suprynowicz F.A. Krawczyk E. Hebert J.D. Sudarshan S.R. Simic V. Kamonjoh C.M. Schlegel R. J. Virol. 2010; 84: 10619-10629Crossref PubMed Scopus (51) Google Scholar). Indeed, TIP30 knockdown resulted in significantly less acidic endosomes (supplemental Fig. S2, A and B). Taken together, these data indicate that Rab5a contribute to endosomal acidification by transporting V-ATPases to endocytic vesicles and that TIP30, ACSL4, and Endo B1 are required for efficient transport. The present study describes a novel protein complex consisting of TIP30, ACSL4, and Endo B1 that interacts with Rab5a and regulates EGFR endocytic trafficking. Down-regulation of these proteins results in trapping of EGF-EGFR complexes in early endosomes, which enabled us to further dissect the EGFR endocytic pathway. We uncovered two consecutive events following EGF-EGFR entrance into the early endosomes because these two events became obviously detectable when the function of the TIP30 complex was inhibited. First, newly formed endosomes are devoid of V-ATPases and Rab5a. V-ATPases are delivered to early endosomes by the Rab5a vesicles. Second, localization of Rab5a and V-ATPases to the early endosomes results in the termination of EGFR endosomal signaling. Clearly, inhibiting the function of the TIP30 complex can block the transport of V-ATPases to endosomes, leading to EGF-bound EGFR detention in endosomes, delayed EGFR endocytic degradation, and sustained activation of Akt. Given that EGF-bound EGFR enclosed in endosomes is sufficient to activate downstream molecules and to induce cell survival (40Wang Y. Pennock S. Chen X. Wang Z. Mol. Cell. Biol. 2002; 22: 7279-7290Crossref PubMed Scopus (217) Google Scholar), our results indicate that enhanced EGFR signaling by inhibition of TIP30, ACSL4 and EndoB1 may contribute to the initiation and progression of cancers. Indeed, we have recently reported that Tip30 deletion in MMTV-Neu mice leads to enhanced EGFR signaling and development of estrogen receptor-positive and progesterone receptor-negative mammary tumors (41Zhang C. Mori M. Gao S. Li A. Hoshino I. Aupperlee M.D. Haslam S.Z. Xiao H. Cancer Res. 2010; 70: 10224-10233Crossref PubMed Scopus (20) Google Scholar). Thus, the regulation of EGFR-mediated endocytosis by the TIP30 complex may serve as a general mechanism to govern EGFR signaling and suppress tumorigenesis. Endo B1 belongs to a family of proteins containing N-terminal Bin-Amphiphysin-Rvs (BAR) domains and is involved in apoptosis, autophagy, mitochondrial fission, and endocytic trafficking (42Takahashi Y. Meyerkord C.L. Wang H.G. Cell Death Differ. 2009; 16: 947-955Crossref PubMed Scopus (103) Google Scholar). The role of Endo B1 in EGFR endocytosis is consistent with a previous report that Endo B1 colocalizes with EEA1 in the early endosome of neural cells in response to nerve growth factor (43Wan J. Cheung A.Y. Fu W.Y. Wu C. Zhang M. Mobley W.C. Cheung Z.H. Ip N.Y. J. Neurosci. 2008; 28: 9002-9012Crossref PubMed Scopus (50) Google Scholar). It is noteworthy that Endo B1 knock-out mice exhibited spontaneous development of lymphomas, hepatocellular carcinomas, and mammary tumors (44Takahashi Y. Meyerkord C.L. Wang H.G. Autophagy. 2008; 4: 121-124Crossref PubMed Scopus (37) Google Scholar). These phenotypes resemble the phenotypes of Tip30 knock-out mice (25Ito M. Jiang C. Krumm K. Zhang X. Pecha J. Zhao J. Guo Y. Roeder R.G. Xiao H. Cancer Res. 2003; 63: 8763-8767PubMed Google Scholar). 3A. Li, J. Pecha, and H. Xiao, unpublished data. Thus, we speculate that TIP30 and Endo B1 may act in concert to suppress tumorigenesis, at least in part, through the regulation of EGFR-mediated endocytosis. With the identification of the interaction between TIP30 and Endo B1, this hypothesis can now be addressed. Rab family proteins have been well known to be essential for vesicle targeting (45Pfeffer S.R. Trends Cell Biol. 2001; 11: 487-491Abstract Full Text Full Text PDF PubMed Scopus (437) Google Scholar). Rab5a is recruited to the early endosomes, where it promotes the endocytic down-regulation of EGFR and transition from endosome to lysosome. Before entering endosomes, Rab5a was found in smaller vesicles localized in the perinuclear region (36Leonard D. Hayakawa A. Lawe D. Lambright D. Bellve K.D. Standley C. Lifshitz L.M. Fogarty K.E. Corvera S. J. Cell Sci. 2008; 121: 3445-3458Crossref PubMed Scopus (88) Google Scholar, 46Bucci C. Parton R.G. Mather I.H. Stunnenberg H. Simons K. Hoflack B. Zerial M. Cell. 1992; 70: 715-728Abstract Full Text PDF PubMed Scopus (1121) Google Scholar). These Rab5 vesicles are redistributed to the cell periphery region, where they colocalize with EGFR in early endosomes in response to EGF treatment (17Nielsen E. Severin F. Backer J.M. Hyman A.A. Zerial M. Nat. Cell Biol. 1999; 1: 376-382Crossref PubMed Scopus (396) Google Scholar, 35Lakadamyali M. Rust M.J. Zhuang X. Cell. 2006; 124: 997-1009Abstract Full Text Full Text PDF PubMed Scopus (436) Google Scholar, 36Leonard D. Hayakawa A. Lawe D. Lambright D. Bellve K.D. Standley C. Lifshitz L.M. Fogarty K.E. Corvera S. J. Cell Sci. 2008; 121: 3445-3458Crossref PubMed Scopus (88) Google Scholar). Notably, newly formed endocytic vesicles containing transferrin, LDL, EGF, or influenza virus were devoid of Rab5a and acquired Rab5a through merging with Rab5a vesicles (35Lakadamyali M. Rust M.J. Zhuang X. Cell. 2006; 124: 997-1009Abstract Full Text Full Text PDF PubMed Scopus (436) Google Scholar). Our data support these observations and clearly show that besides the EEA1- and EGFR-positive endocytic vesicles, there is a population of Rab5a-positive vesicles that are negative for EEA1 and EGFR but positive for V-ATPases. Given that intracellular trafficking of EGF-EGFR or entry of dengue and West Nile viruses into HeLa cells by clathrin-mediated endocytosis requires vacuolar acidic pH and Rab5a (47Krishnan M.N. Sukumaran B. Pal U. Agaisse H. Murray J.L. Hodge T.W. Fikrig E. J. Virol. 2007; 81: 4881-4885Crossref PubMed Scopus (180) Google Scholar), we propose that Rab5a is involved in post-trans-Golgi network transport of integral membrane proteins and helps create acidic endosomal pH by targeting V-ATPases to endosomes, thereby providing the driving force for EGFR endocytic trafficking and viral entry into host cells (Fig. 9). We were surprised to see that Alexa488-EGF vesicles pinched off from endosomes shortly after internalization. This event was observed in both human liver cancer cells and mouse primary hepatocytes. The Alexa488-EGF vesicles are previously uncharacterized vesicles that are devoid of early endosomal, recycling endosomal, and lysosomal markers, implying that EGF might exit endosomes after the dissociation with EGFR. Nevertheless, it will be important to determine whether Alexa488-EGF in these vesicles is intact or degraded. We thank Dr. Stephen Prescott for generously sharing anti-ACSL4 antibody, Dr. Chang-deng Hu for generously sharing bimolecular fluorescence complementation plasmids, and Drs. Richard Schlegel and Frank Suprynowicz for generously sharing pHrodo-EGF. We are grateful to Drs. Sandra Haslam, Hans Cheng, Jerry Dodgson, Karen Friderici, and Richard Schwartz for critical reading of the manuscript. Download .pdf (1.71 MB) Help with pdf files" @default.
- W2053676985 created "2016-06-24" @default.
- W2053676985 creator A5000870139 @default.
- W2053676985 creator A5016053889 @default.
- W2053676985 creator A5022619931 @default.
- W2053676985 creator A5040367016 @default.
- W2053676985 date "2011-03-01" @default.
- W2053676985 modified "2023-09-29" @default.
- W2053676985 title "A Novel TIP30 Protein Complex Regulates EGF Receptor Signaling and Endocytic Degradation" @default.
- W2053676985 cites W1503993378 @default.
- W2053676985 cites W1541488575 @default.
- W2053676985 cites W1590377674 @default.
- W2053676985 cites W1614056212 @default.
- W2053676985 cites W1894641937 @default.
- W2053676985 cites W1964720421 @default.
- W2053676985 cites W1966311581 @default.
- W2053676985 cites W1966451921 @default.
- W2053676985 cites W1978103068 @default.
- W2053676985 cites W1982685209 @default.
- W2053676985 cites W1987414455 @default.
- W2053676985 cites W1988313459 @default.
- W2053676985 cites W1992960628 @default.
- W2053676985 cites W2001609281 @default.
- W2053676985 cites W2005574904 @default.
- W2053676985 cites W2006585409 @default.
- W2053676985 cites W2007171704 @default.
- W2053676985 cites W2007797957 @default.
- W2053676985 cites W2014783572 @default.
- W2053676985 cites W2016324935 @default.
- W2053676985 cites W2032504743 @default.
- W2053676985 cites W2046585193 @default.
- W2053676985 cites W2051338141 @default.
- W2053676985 cites W2053700118 @default.
- W2053676985 cites W2055843777 @default.
- W2053676985 cites W2056442594 @default.
- W2053676985 cites W2072948925 @default.
- W2053676985 cites W2084119414 @default.
- W2053676985 cites W2102257270 @default.
- W2053676985 cites W2104257202 @default.
- W2053676985 cites W2105877961 @default.
- W2053676985 cites W2105973954 @default.
- W2053676985 cites W2116422958 @default.
- W2053676985 cites W2124608032 @default.
- W2053676985 cites W2134344512 @default.
- W2053676985 cites W2142046859 @default.
- W2053676985 cites W2143891754 @default.
- W2053676985 cites W2152509860 @default.
- W2053676985 cites W2152634695 @default.
- W2053676985 cites W2156614769 @default.
- W2053676985 cites W2164188238 @default.
- W2053676985 cites W2165456024 @default.
- W2053676985 cites W2166155213 @default.
- W2053676985 cites W2171841329 @default.
- W2053676985 cites W2184724935 @default.
- W2053676985 cites W4211214945 @default.
- W2053676985 doi "https://doi.org/10.1074/jbc.m110.207720" @default.
- W2053676985 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3058969" @default.
- W2053676985 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21252234" @default.
- W2053676985 hasPublicationYear "2011" @default.
- W2053676985 type Work @default.
- W2053676985 sameAs 2053676985 @default.
- W2053676985 citedByCount "52" @default.
- W2053676985 countsByYear W20536769852012 @default.
- W2053676985 countsByYear W20536769852013 @default.
- W2053676985 countsByYear W20536769852014 @default.
- W2053676985 countsByYear W20536769852015 @default.
- W2053676985 countsByYear W20536769852016 @default.
- W2053676985 countsByYear W20536769852017 @default.
- W2053676985 countsByYear W20536769852018 @default.
- W2053676985 countsByYear W20536769852019 @default.
- W2053676985 countsByYear W20536769852021 @default.
- W2053676985 countsByYear W20536769852022 @default.
- W2053676985 countsByYear W20536769852023 @default.
- W2053676985 crossrefType "journal-article" @default.
- W2053676985 hasAuthorship W2053676985A5000870139 @default.
- W2053676985 hasAuthorship W2053676985A5016053889 @default.
- W2053676985 hasAuthorship W2053676985A5022619931 @default.
- W2053676985 hasAuthorship W2053676985A5040367016 @default.
- W2053676985 hasBestOaLocation W20536769851 @default.
- W2053676985 hasConcept C102747710 @default.
- W2053676985 hasConcept C170493617 @default.
- W2053676985 hasConcept C185592680 @default.
- W2053676985 hasConcept C2779679103 @default.
- W2053676985 hasConcept C28005876 @default.
- W2053676985 hasConcept C41008148 @default.
- W2053676985 hasConcept C55493867 @default.
- W2053676985 hasConcept C62478195 @default.
- W2053676985 hasConcept C76155785 @default.
- W2053676985 hasConcept C79747257 @default.
- W2053676985 hasConcept C86803240 @default.
- W2053676985 hasConcept C95444343 @default.
- W2053676985 hasConceptScore W2053676985C102747710 @default.
- W2053676985 hasConceptScore W2053676985C170493617 @default.
- W2053676985 hasConceptScore W2053676985C185592680 @default.
- W2053676985 hasConceptScore W2053676985C2779679103 @default.
- W2053676985 hasConceptScore W2053676985C28005876 @default.
- W2053676985 hasConceptScore W2053676985C41008148 @default.
- W2053676985 hasConceptScore W2053676985C55493867 @default.