Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053735414> ?p ?o ?g. }
- W2053735414 endingPage "229" @default.
- W2053735414 startingPage "218" @default.
- W2053735414 abstract "Abstract Early Cambrian black shales of South China not only host important sponge, arthropod and other soft-bodied fossils that have helped to trace early metazoan diversification, but also show extreme enrichments of a number of trace metals in particular Ni, Mo and V. In this study, we use a new approach by analyzing rare earth elements in kerogen extracted from the black shales, together with a number of redox-sensitive trace element compositions and total organic carbon (TOC) concentrations in an early Cambrian black shale sequence in Zunyi, Guizhou province, South China, to place better constraints on the oceanic redox conditions and the origin of the extreme metal enrichment. Our data show significant negative Ce anomalies (Ce/Ce* as low as 0.4) occurring in kerogen, which indicate an oxygenated surface environment of primary productivity in consistent with the concept that the organic matter is mainly derived from organisms in the euphotic zone. Mass balance calculation suggests that the kerogen-associated REE can dominate the measured black shale REE budget, while similarity between our measured REE patterns and those of similarly aged phosphorites indicates that the REE content of ancient phosphorites may have also derived initially from organic matter. The redox-sensitive trace elements, such as U, V, Mo, and their ratios of U/Al, V/Al and Mo/Al in black shales show different correlation patterns with TOC contents. The upper black shales show a good metal/TOC correlation, but such a correlation is absent in the lower part. The lower black shales exhibit much higher metal enrichments compared to Black Sea sulphidic (euxinic) sediment. This is taken to indicate the presence of sulphidic bottom waters during the deposition of the lower black shales, including the Ni–Mo ore layer. In contrast, anoxic, non-sulphidic conditions occurred during the deposition of the upper black shales. Taking all these geochemical data together, we suggest that the early Cambrian South China seaway was strongly stratified and stagnant, and that euxinic bottom water conditions may have led to enrichment of the redox-sensitive metals such as U, V and Mo in the lower black shales, and in one case the occurrence of a polymetallic Ni–Mo sulphide ore bed bearing an extraordinarily extreme metal enrichment, which, according to the Mo/TOC and Ni/TOC ratios and much other geochemical evidence, may have been additionally influenced by hydrothermal input of metals within the rift basin as suggested by a number of previous studies." @default.
- W2053735414 created "2016-06-24" @default.
- W2053735414 creator A5000554967 @default.
- W2053735414 creator A5051635409 @default.
- W2053735414 creator A5064778197 @default.
- W2053735414 creator A5082919794 @default.
- W2053735414 date "2013-02-01" @default.
- W2053735414 modified "2023-10-14" @default.
- W2053735414 title "Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments" @default.
- W2053735414 cites W1611928422 @default.
- W2053735414 cites W1648236804 @default.
- W2053735414 cites W1966825082 @default.
- W2053735414 cites W1975220765 @default.
- W2053735414 cites W1978633539 @default.
- W2053735414 cites W1986864027 @default.
- W2053735414 cites W1987929323 @default.
- W2053735414 cites W1988390535 @default.
- W2053735414 cites W1990523556 @default.
- W2053735414 cites W1999047362 @default.
- W2053735414 cites W2001156023 @default.
- W2053735414 cites W2003194246 @default.
- W2053735414 cites W2003582940 @default.
- W2053735414 cites W2011968190 @default.
- W2053735414 cites W2012212240 @default.
- W2053735414 cites W2019312620 @default.
- W2053735414 cites W2023262389 @default.
- W2053735414 cites W2030366727 @default.
- W2053735414 cites W2032466071 @default.
- W2053735414 cites W2033521641 @default.
- W2053735414 cites W2033866036 @default.
- W2053735414 cites W2040950908 @default.
- W2053735414 cites W2041762395 @default.
- W2053735414 cites W2042505381 @default.
- W2053735414 cites W2048945098 @default.
- W2053735414 cites W2054854600 @default.
- W2053735414 cites W2055862951 @default.
- W2053735414 cites W2057260077 @default.
- W2053735414 cites W2057391595 @default.
- W2053735414 cites W2057482300 @default.
- W2053735414 cites W2059072656 @default.
- W2053735414 cites W2065591452 @default.
- W2053735414 cites W2066611747 @default.
- W2053735414 cites W2075619059 @default.
- W2053735414 cites W2077582711 @default.
- W2053735414 cites W2080561829 @default.
- W2053735414 cites W2084207455 @default.
- W2053735414 cites W2091461125 @default.
- W2053735414 cites W2091794361 @default.
- W2053735414 cites W2095312509 @default.
- W2053735414 cites W2097935007 @default.
- W2053735414 cites W2102947943 @default.
- W2053735414 cites W2104296040 @default.
- W2053735414 cites W2104707308 @default.
- W2053735414 cites W2111968947 @default.
- W2053735414 cites W2112338613 @default.
- W2053735414 cites W2115053158 @default.
- W2053735414 cites W2123379910 @default.
- W2053735414 cites W2133194253 @default.
- W2053735414 cites W2147951832 @default.
- W2053735414 cites W2148077486 @default.
- W2053735414 cites W2148609550 @default.
- W2053735414 cites W2155707344 @default.
- W2053735414 cites W2157222225 @default.
- W2053735414 cites W2167965574 @default.
- W2053735414 cites W4238032652 @default.
- W2053735414 doi "https://doi.org/10.1016/j.precamres.2011.07.004" @default.
- W2053735414 hasPublicationYear "2013" @default.
- W2053735414 type Work @default.
- W2053735414 sameAs 2053735414 @default.
- W2053735414 citedByCount "198" @default.
- W2053735414 countsByYear W20537354142012 @default.
- W2053735414 countsByYear W20537354142013 @default.
- W2053735414 countsByYear W20537354142014 @default.
- W2053735414 countsByYear W20537354142015 @default.
- W2053735414 countsByYear W20537354142016 @default.
- W2053735414 countsByYear W20537354142017 @default.
- W2053735414 countsByYear W20537354142018 @default.
- W2053735414 countsByYear W20537354142019 @default.
- W2053735414 countsByYear W20537354142020 @default.
- W2053735414 countsByYear W20537354142021 @default.
- W2053735414 countsByYear W20537354142022 @default.
- W2053735414 countsByYear W20537354142023 @default.
- W2053735414 crossrefType "journal-article" @default.
- W2053735414 hasAuthorship W2053735414A5000554967 @default.
- W2053735414 hasAuthorship W2053735414A5051635409 @default.
- W2053735414 hasAuthorship W2053735414A5064778197 @default.
- W2053735414 hasAuthorship W2053735414A5082919794 @default.
- W2053735414 hasConcept C109007969 @default.
- W2053735414 hasConcept C126559015 @default.
- W2053735414 hasConcept C127313418 @default.
- W2053735414 hasConcept C151730666 @default.
- W2053735414 hasConcept C153127940 @default.
- W2053735414 hasConcept C166957645 @default.
- W2053735414 hasConcept C17409809 @default.
- W2053735414 hasConcept C191935318 @default.
- W2053735414 hasConcept C1965285 @default.
- W2053735414 hasConcept C2777615417 @default.
- W2053735414 hasConcept C2779196632 @default.