Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053859146> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2053859146 endingPage "690" @default.
- W2053859146 startingPage "685" @default.
- W2053859146 abstract "Therapeutic DeliveryVol. 2, No. 6 CommentaryOral delivery of poorly soluble compounds by supersaturated systemsThomas Wai-Yip Lee, Nathan A Boersen, Ho-Wah Hui and Paul KurtulikThomas Wai-Yip Lee† Author for correspondenceFormulations R&D, Celgene Corporation, Summit, New Jersey, NJ 07901, USA. Search for more papers by this authorEmail the corresponding author at thlee@celgene.com, Nathan A BoersenFormulations R&D, Celgene Corporation, Summit, New Jersey, NJ 07901, USASearch for more papers by this author, Ho-Wah HuiFormulations R&D, Celgene Corporation, Summit, New Jersey, NJ 07901, USASearch for more papers by this author and Paul KurtulikFormulations R&D, Celgene Corporation, Summit, New Jersey, NJ 07901, USASearch for more papers by this authorPublished Online:12 Jul 2011https://doi.org/10.4155/tde.11.49AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: pharmaceutical saltspoorly soluble compoundsself-emulsifying systemssolid dispersionssupersaturated delivery systemsBibliography1 Lee A, Breitenbucher JG. The impact of combinatorial chemistry on drug discovery. Curr. Opin. Drug Discov. Dev.6(4),494–508 (2003).Medline, CAS, Google Scholar2 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.46(1–3),3–26 (2001).Crossref, Medline, CAS, Google Scholar3 Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification – the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res.12(3),413–420 (1995).Crossref, Medline, CAS, Google Scholar4 Dressman J, Kramer J. Pharmaceutical Dissolution Testing. Taylor and Francis, NY, USA (2005).Google Scholar5 Li SF, Wong SM, Sethia S et al. Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm. Res.22(4),628–635 (2005).Crossref, Medline, CAS, Google Scholar6 Lee TWY, Li S, Bose S. Predictive pH gradient dissolution method for forecasting in vivo behavior of pharmaceutical weak acids and its salts. Presented at: American Association of Pharmaceutical Scientists. Baltimore, MA, USA 2004.Google Scholar7 Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv. Drug Deliv. Rev.25(1),103–128 (1997).Crossref, CAS, Google Scholar8 Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv. Drug Deliv. Rev.60(6),625–637 (2008).Crossref, Medline, CAS, Google Scholar9 Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci.11,S93–S98 (2000).Crossref, Medline, CAS, Google Scholar10 Bogman K, Erne-Brand F, Alsenz J, Drewe J. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J. Pharm. Sci.92(6),1250–1261 (2003).Crossref, Medline, CAS, Google Scholar11 Hugger ED, Novak BL, Burton PS, Audus KL, Borchardt RT. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J. Pharm. Sci.91(9),1991–2002 (2002).Crossref, Medline, CAS, Google Scholar12 Shono Y, Nishihara H, Matsuda Y et al. Modulation of intestinal P-glycoprotein function by cremophor EL and other surfactants by an in vitro diffusion chamber method using the isolated rat intestinal membranes. J. Pharm. Sci.93(4),877–885 (2004).Crossref, Medline, CAS, Google Scholar13 Gao P, Morozowich W. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin. Drug Deliv.3(1),97–110 (2006).Crossref, Medline, CAS, Google Scholar14 Pellett MA, Castellano S, Hadgraft J, Davis AF. The penetration of supersaturated solutions of piroxicam across silicone membranes and human skin in vitro. J. Control. Release46(3),205–214 (1997).Crossref, CAS, Google Scholar15 Pellett MA, Davis AF, Hadgraft J. Effect of supersaturation on membrane-transport. 2. Poroxicam. Int. J. Pharm.111(1),1–6 (1994).Crossref, CAS, Google Scholar16 Pellett MA, Roberts MS, Hadgraft J. Supersaturated solutions evaluated with an in vitro stratum corneum tape stripping technique. Int. J. Pharm.151(1),91–98 (1997).Crossref, CAS, Google Scholar17 Raghavan SL, Trividic A, Davis AF, Hadgraft J. Effect of cellulose polymers on supersaturation and in vitro membrane transport of hydrocortisone acetate. Int. J. Pharm.193(2),231–237 (2000).Crossref, Medline, CAS, Google Scholar18 Hasegawa A, Nakagawa H, Sugimoto I. Application of solid dispersion of Nifedipine with enteric coating agent to prepare a sustained-release dosage form. Chem. Pharm. Bull.33(4),1615–1619 (1985).Crossref, Medline, CAS, Google Scholar19 Kohri N, Yamayoshi Y, Xin H et al. Improving the oral bioavailability of albendazole in rabbits by the solid dispersion technique. J. Pharm. Pharmacol.51(2),159–164 (1999).Crossref, Medline, CAS, Google Scholar20 Hasegawa A, Taguchi M, Suzuki R et al. Supersaturation mechanism of drugs from solid dispersions with enteric coating agents. Chem. Pharm. Bull.36(12),4941–4950 (1988).Crossref, Medline, CAS, Google Scholar21 Ma XG, Taw J, Chiang CM. Control of drug crystallization in transdermal matrix system. Int. J. Pharm.142(1),115–119 (1996).Crossref, CAS, Google Scholar22 Raghavan SL, Trividic A, Davis AF, Hadgraft J. Crystallization of hydrocortisone acetate: influence of polymers. Int. J. Pharm.212(2),213–221 (2001).Crossref, Medline, CAS, Google Scholar23 Schwarb FP, Imanidis G, Smith EW, Haigh JM, Surber C. Effect of concentration and degree of saturation of topical fluocinonide formulations on in vitro membrane transport and in vivo availability on human skin. Pharm. Res.16(6),909–915 (1999).Crossref, Medline, CAS, Google Scholar24 Gao P, Rush BD, Pfund WP et al. Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J. Pharm. Sci.92(12),2386–2398 (2003).Crossref, Medline, CAS, Google Scholar25 Qiu Y, Chen Y, Zhang G, Liu L, Porter WR. Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice. Elsevier, Amsterdam, The Netherlands (2009).Google Scholar26 Joshi HN, Tejwani RW, Davidovich M et al. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture. Int. J. Pharm.269(1),251–258 (2004).Crossref, Medline, CAS, Google Scholar27 Dannenfelser RM, He H, Joshi Y, Bateman S, Serajuddin ATM. Development of clinical dosage forms for a poorly water soluble drug I: application of polyethylene glycol-polysorbate 80 solid dispersion carrier system. J. Pharm. Sci.93(5),1165–1175 (2004).Crossref, Medline, CAS, Google Scholar28 Hancock BC, Zograf G. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci.86(1),1–12 (1997).Crossref, Medline, CAS, Google Scholar29 Ambike AA, Mahadik KR, Paradkar A. Spray-dried amorphous solid dispersions of simvastatin, a low T-g drug: in vitro and in vivo evaluations. Pharm. Res.22(6),990–998 (2005).Crossref, Medline, CAS, Google Scholar30 Lakshman J, Cao Y, Kowalski J, Serajuddin ATM. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol. Pharm.5(6),994–1002 (2008).Crossref, Medline, CAS, Google Scholar31 Lakshman JP, Kowalski J, Vasanthavada M, et al. Application of melt granulation technology to enhance tabletting properties of poorly compactible high-dose drugs. J. Pharm. Sci.100(4),1553–1565 (2010).Crossref, Medline, Google Scholar101 Novartis AG. WO122022 (2006).Google ScholarFiguresReferencesRelatedDetailsCited ByHydroxypropyl methylcellulose‐modified whey protein concentrate microcapsules for the encapsulation of tangeretin12 February 2022 | International Journal of Food Science & Technology, Vol. 57, No. 4Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazole-benznidazole based on amorphous solid dispersionsEuropean Journal of Pharmaceutical Sciences, Vol. 119Oral bioavailability enhancement through supersaturation: an update and meta-analysis11 August 2016 | Expert Opinion on Drug Delivery, Vol. 14, No. 3Using in situ Raman spectroscopy to study the drug precipitation inhibition and supersaturation mechanism of Vitamin E TPGS from self-emulsifying drug delivery systems (SEDDS)Journal of Pharmaceutical and Biomedical Analysis, Vol. 109 Vol. 2, No. 6 Follow us on social media for the latest updates Metrics Downloaded 194 times History Published online 12 July 2011 Published in print June 2011 Information© Future Science LtdKeywordspharmaceutical saltspoorly soluble compoundsself-emulsifying systemssolid dispersionssupersaturated delivery systemsFinancial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W2053859146 created "2016-06-24" @default.
- W2053859146 creator A5007359336 @default.
- W2053859146 creator A5030668015 @default.
- W2053859146 creator A5039905201 @default.
- W2053859146 creator A5043975211 @default.
- W2053859146 date "2011-06-01" @default.
- W2053859146 modified "2023-09-25" @default.
- W2053859146 title "Oral delivery of poorly soluble compounds by supersaturated systems" @default.
- W2053859146 cites W1498305210 @default.
- W2053859146 cites W1981168366 @default.
- W2053859146 cites W1985426192 @default.
- W2053859146 cites W1990663620 @default.
- W2053859146 cites W2003819962 @default.
- W2053859146 cites W2011044581 @default.
- W2053859146 cites W2011068615 @default.
- W2053859146 cites W2020282466 @default.
- W2053859146 cites W2023439288 @default.
- W2053859146 cites W2034277254 @default.
- W2053859146 cites W2041016731 @default.
- W2053859146 cites W2059829176 @default.
- W2053859146 cites W2064572156 @default.
- W2053859146 cites W2066569939 @default.
- W2053859146 cites W2067858340 @default.
- W2053859146 cites W2072498894 @default.
- W2053859146 cites W2075179133 @default.
- W2053859146 cites W2076269997 @default.
- W2053859146 cites W2107222756 @default.
- W2053859146 cites W2107566417 @default.
- W2053859146 cites W2119238594 @default.
- W2053859146 cites W2135732933 @default.
- W2053859146 cites W2144077159 @default.
- W2053859146 cites W2145269041 @default.
- W2053859146 cites W2156285632 @default.
- W2053859146 cites W2318279314 @default.
- W2053859146 cites W3141957767 @default.
- W2053859146 cites W34308943 @default.
- W2053859146 doi "https://doi.org/10.4155/tde.11.49" @default.
- W2053859146 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22822502" @default.
- W2053859146 hasPublicationYear "2011" @default.
- W2053859146 type Work @default.
- W2053859146 sameAs 2053859146 @default.
- W2053859146 citedByCount "4" @default.
- W2053859146 countsByYear W20538591462015 @default.
- W2053859146 countsByYear W20538591462016 @default.
- W2053859146 countsByYear W20538591462018 @default.
- W2053859146 countsByYear W20538591462022 @default.
- W2053859146 crossrefType "journal-article" @default.
- W2053859146 hasAuthorship W2053859146A5007359336 @default.
- W2053859146 hasAuthorship W2053859146A5030668015 @default.
- W2053859146 hasAuthorship W2053859146A5039905201 @default.
- W2053859146 hasAuthorship W2053859146A5043975211 @default.
- W2053859146 hasConcept C127413603 @default.
- W2053859146 hasConcept C171250308 @default.
- W2053859146 hasConcept C178790620 @default.
- W2053859146 hasConcept C185592680 @default.
- W2053859146 hasConcept C192562407 @default.
- W2053859146 hasConcept C200447597 @default.
- W2053859146 hasConcept C42360764 @default.
- W2053859146 hasConceptScore W2053859146C127413603 @default.
- W2053859146 hasConceptScore W2053859146C171250308 @default.
- W2053859146 hasConceptScore W2053859146C178790620 @default.
- W2053859146 hasConceptScore W2053859146C185592680 @default.
- W2053859146 hasConceptScore W2053859146C192562407 @default.
- W2053859146 hasConceptScore W2053859146C200447597 @default.
- W2053859146 hasConceptScore W2053859146C42360764 @default.
- W2053859146 hasIssue "6" @default.
- W2053859146 hasLocation W20538591461 @default.
- W2053859146 hasLocation W20538591462 @default.
- W2053859146 hasOpenAccess W2053859146 @default.
- W2053859146 hasPrimaryLocation W20538591461 @default.
- W2053859146 hasRelatedWork W2074808966 @default.
- W2053859146 hasRelatedWork W2089927884 @default.
- W2053859146 hasRelatedWork W2094860212 @default.
- W2053859146 hasRelatedWork W2335945300 @default.
- W2053859146 hasRelatedWork W2419084656 @default.
- W2053859146 hasRelatedWork W2748952813 @default.
- W2053859146 hasRelatedWork W2899084033 @default.
- W2053859146 hasRelatedWork W2922186515 @default.
- W2053859146 hasRelatedWork W3007428637 @default.
- W2053859146 hasRelatedWork W3171679535 @default.
- W2053859146 hasVolume "2" @default.
- W2053859146 isParatext "false" @default.
- W2053859146 isRetracted "false" @default.
- W2053859146 magId "2053859146" @default.
- W2053859146 workType "article" @default.