Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053955857> ?p ?o ?g. }
- W2053955857 endingPage "443" @default.
- W2053955857 startingPage "428" @default.
- W2053955857 abstract "Exploratory data analysis (EDA) can reveal important features of underlying distributions, and these features often have an impact on inferences and conclusions drawn from data. Graphical analysis is central to EDA, and graphical representations of distributions often benefit from smoothing. A viable method of estimating and graphing the underlying density in EDA is kernel density estimation (KDE). This article provides an introduction to KDE and examines alternative methods for specifying the smoothing bandwidth in terms of their ability to recover the true density. We also illustrate the comparison and use of KDE methods with 2 empirical examples. Simulations were carried out in which we compared 8 bandwidth selection methods (Sheather-Jones plug-in [SJDP], normal rule of thumb, Silverman's rule of thumb, least squares cross-validation, biased cross-validation, and 3 adaptive kernel estimators) using 5 true density shapes (standard normal, positively skewed, bimodal, skewed bimodal, and standard lognormal) and 9 sample sizes (15, 25, 50, 75, 100, 250, 500, 1,000, 2,000). Results indicate that, overall, SJDP outperformed all methods. However, for smaller sample sizes (25 to 100) either biased cross-validation or Silverman's rule of thumb was recommended, and for larger sample sizes the adaptive kernel estimator with SJDP was recommended. Information is provided about implementing the recommendations in the R computing language." @default.
- W2053955857 created "2016-06-24" @default.
- W2053955857 creator A5000402168 @default.
- W2053955857 creator A5023249078 @default.
- W2053955857 creator A5053095971 @default.
- W2053955857 creator A5081189132 @default.
- W2053955857 creator A5084700472 @default.
- W2053955857 date "2014-09-01" @default.
- W2053955857 modified "2023-09-24" @default.
- W2053955857 title "How bandwidth selection algorithms impact exploratory data analysis using kernel density estimation." @default.
- W2053955857 cites W1489950266 @default.
- W2053955857 cites W1493207670 @default.
- W2053955857 cites W1575243030 @default.
- W2053955857 cites W1963762109 @default.
- W2053955857 cites W1973678262 @default.
- W2053955857 cites W1983716954 @default.
- W2053955857 cites W1984499217 @default.
- W2053955857 cites W1995127855 @default.
- W2053955857 cites W1998378660 @default.
- W2053955857 cites W2004840619 @default.
- W2053955857 cites W2010585935 @default.
- W2053955857 cites W2017793034 @default.
- W2053955857 cites W2039912699 @default.
- W2053955857 cites W2050024377 @default.
- W2053955857 cites W2051195364 @default.
- W2053955857 cites W2060308631 @default.
- W2053955857 cites W2065015660 @default.
- W2053955857 cites W2084285929 @default.
- W2053955857 cites W2085024069 @default.
- W2053955857 cites W2090847193 @default.
- W2053955857 cites W2094771755 @default.
- W2053955857 cites W2107507182 @default.
- W2053955857 cites W2109453861 @default.
- W2053955857 cites W2116635927 @default.
- W2053955857 cites W2129905273 @default.
- W2053955857 cites W2163288162 @default.
- W2053955857 cites W2183424762 @default.
- W2053955857 cites W2582743722 @default.
- W2053955857 cites W3122047858 @default.
- W2053955857 cites W573510531 @default.
- W2053955857 cites W79918814 @default.
- W2053955857 cites W96523377 @default.
- W2053955857 cites W2151877421 @default.
- W2053955857 doi "https://doi.org/10.1037/a0036850" @default.
- W2053955857 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24885339" @default.
- W2053955857 hasPublicationYear "2014" @default.
- W2053955857 type Work @default.
- W2053955857 sameAs 2053955857 @default.
- W2053955857 citedByCount "13" @default.
- W2053955857 countsByYear W20539558572012 @default.
- W2053955857 countsByYear W20539558572015 @default.
- W2053955857 countsByYear W20539558572017 @default.
- W2053955857 countsByYear W20539558572018 @default.
- W2053955857 countsByYear W20539558572019 @default.
- W2053955857 countsByYear W20539558572020 @default.
- W2053955857 countsByYear W20539558572021 @default.
- W2053955857 countsByYear W20539558572022 @default.
- W2053955857 countsByYear W20539558572023 @default.
- W2053955857 crossrefType "journal-article" @default.
- W2053955857 hasAuthorship W2053955857A5000402168 @default.
- W2053955857 hasAuthorship W2053955857A5023249078 @default.
- W2053955857 hasAuthorship W2053955857A5053095971 @default.
- W2053955857 hasAuthorship W2053955857A5081189132 @default.
- W2053955857 hasAuthorship W2053955857A5084700472 @default.
- W2053955857 hasBestOaLocation W20539558572 @default.
- W2053955857 hasConcept C105795698 @default.
- W2053955857 hasConcept C11413529 @default.
- W2053955857 hasConcept C114614502 @default.
- W2053955857 hasConcept C122280245 @default.
- W2053955857 hasConcept C12267149 @default.
- W2053955857 hasConcept C129848803 @default.
- W2053955857 hasConcept C154945302 @default.
- W2053955857 hasConcept C185429906 @default.
- W2053955857 hasConcept C189508267 @default.
- W2053955857 hasConcept C195699287 @default.
- W2053955857 hasConcept C27181475 @default.
- W2053955857 hasConcept C2776257435 @default.
- W2053955857 hasConcept C31258907 @default.
- W2053955857 hasConcept C33923547 @default.
- W2053955857 hasConcept C3770464 @default.
- W2053955857 hasConcept C41008148 @default.
- W2053955857 hasConcept C71134354 @default.
- W2053955857 hasConcept C74193536 @default.
- W2053955857 hasConcept C84894716 @default.
- W2053955857 hasConcept C89246107 @default.
- W2053955857 hasConceptScore W2053955857C105795698 @default.
- W2053955857 hasConceptScore W2053955857C11413529 @default.
- W2053955857 hasConceptScore W2053955857C114614502 @default.
- W2053955857 hasConceptScore W2053955857C122280245 @default.
- W2053955857 hasConceptScore W2053955857C12267149 @default.
- W2053955857 hasConceptScore W2053955857C129848803 @default.
- W2053955857 hasConceptScore W2053955857C154945302 @default.
- W2053955857 hasConceptScore W2053955857C185429906 @default.
- W2053955857 hasConceptScore W2053955857C189508267 @default.
- W2053955857 hasConceptScore W2053955857C195699287 @default.
- W2053955857 hasConceptScore W2053955857C27181475 @default.
- W2053955857 hasConceptScore W2053955857C2776257435 @default.
- W2053955857 hasConceptScore W2053955857C31258907 @default.