Matches in SemOpenAlex for { <https://semopenalex.org/work/W2053980954> ?p ?o ?g. }
- W2053980954 endingPage "263" @default.
- W2053980954 startingPage "251" @default.
- W2053980954 abstract "Because of the importance of accurately defining the target in radiation treatment planning, we have developed a deformable-template algorithm for the semi-automatic delineation of normal tissue structures on computed tomography (CT) images. We illustrate the method by applying it to the spinal canal. Segmentation is performed in three steps: (a) partial delineation of the anatomic structure is obtained by wavelet-based edge detection; (b) a deformable-model template is fitted to the edge set by chamfer matching; and (c) the template is relaxed away from its original shape into its final position. Appropriately chosen ranges for the model parameters limit the deformations of the template, accounting for interpatient variability. Our approach differs from those used in other deformable models in that it does not inherently require the modeling of forces. Instead, the spinal canal was modeled using Fourier descriptors derived from four sets of manually drawn contours. Segmentation was carried out, without manual intervention, on five CT data sets and the algorithm's performance was judged subjectively by two radiation oncologists. Two assessments were considered: in the first, segmentation on a random selection of 100 axial CT images was compared with the corresponding contours drawn manually by one of six dosimetrists, also chosen randomly; in the second assessment, the segmentation of each image in the five evaluable CT sets (a total of 557 axial images) was rated as either successful, unsuccessful, or requiring further editing. Contours generated by the algorithm were more likely than manually drawn contours to be considered acceptable by the oncologists. The mean proportions of acceptable contours were 93% (automatic) and 69% (manual). Automatic delineation of the spinal canal was deemed to be successful on 91% of the images, unsuccessful on 2% of the images, and requiring further editing on 7% of the images. Our deformable template algorithm thus gives a robust segmentation of the spinal canal on CT images. The method can be extended to other structures, although it remains to be shown that chamfer matching is sufficiently robust for the delineation of soft-tissue structures surrounded by soft tissue." @default.
- W2053980954 created "2016-06-24" @default.
- W2053980954 creator A5015882860 @default.
- W2053980954 creator A5055888843 @default.
- W2053980954 creator A5059443150 @default.
- W2053980954 creator A5086483620 @default.
- W2053980954 date "2004-01-22" @default.
- W2053980954 modified "2023-09-26" @default.
- W2053980954 title "A deformable-model approach to semi-automatic segmentation of CT images demonstrated by application to the spinal canal" @default.
- W2053980954 cites W1968439442 @default.
- W2053980954 cites W1970400948 @default.
- W2053980954 cites W1983293693 @default.
- W2053980954 cites W1992996001 @default.
- W2053980954 cites W2022679298 @default.
- W2053980954 cites W2029022820 @default.
- W2053980954 cites W2034987376 @default.
- W2053980954 cites W2039147821 @default.
- W2053980954 cites W2048823983 @default.
- W2053980954 cites W2056766887 @default.
- W2053980954 cites W2059687243 @default.
- W2053980954 cites W2067698886 @default.
- W2053980954 cites W2069746112 @default.
- W2053980954 cites W2076761842 @default.
- W2053980954 cites W2097543505 @default.
- W2053980954 cites W2104095591 @default.
- W2053980954 cites W2132984323 @default.
- W2053980954 cites W2145023731 @default.
- W2053980954 cites W2148107745 @default.
- W2053980954 cites W2171074980 @default.
- W2053980954 cites W2172167640 @default.
- W2053980954 cites W2176290317 @default.
- W2053980954 cites W4214540058 @default.
- W2053980954 cites W4255349969 @default.
- W2053980954 doi "https://doi.org/10.1118/1.1634483" @default.
- W2053980954 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15000611" @default.
- W2053980954 hasPublicationYear "2004" @default.
- W2053980954 type Work @default.
- W2053980954 sameAs 2053980954 @default.
- W2053980954 citedByCount "44" @default.
- W2053980954 countsByYear W20539809542012 @default.
- W2053980954 countsByYear W20539809542013 @default.
- W2053980954 countsByYear W20539809542014 @default.
- W2053980954 countsByYear W20539809542015 @default.
- W2053980954 countsByYear W20539809542016 @default.
- W2053980954 countsByYear W20539809542018 @default.
- W2053980954 countsByYear W20539809542020 @default.
- W2053980954 countsByYear W20539809542022 @default.
- W2053980954 crossrefType "journal-article" @default.
- W2053980954 hasAuthorship W2053980954A5015882860 @default.
- W2053980954 hasAuthorship W2053980954A5055888843 @default.
- W2053980954 hasAuthorship W2053980954A5059443150 @default.
- W2053980954 hasAuthorship W2053980954A5086483620 @default.
- W2053980954 hasConcept C115961682 @default.
- W2053980954 hasConcept C124504099 @default.
- W2053980954 hasConcept C126838900 @default.
- W2053980954 hasConcept C153180895 @default.
- W2053980954 hasConcept C154945302 @default.
- W2053980954 hasConcept C166704113 @default.
- W2053980954 hasConcept C201645570 @default.
- W2053980954 hasConcept C2524010 @default.
- W2053980954 hasConcept C31601959 @default.
- W2053980954 hasConcept C31972630 @default.
- W2053980954 hasConcept C33923547 @default.
- W2053980954 hasConcept C41008148 @default.
- W2053980954 hasConcept C509974204 @default.
- W2053980954 hasConcept C71924100 @default.
- W2053980954 hasConcept C89600930 @default.
- W2053980954 hasConcept C92757383 @default.
- W2053980954 hasConceptScore W2053980954C115961682 @default.
- W2053980954 hasConceptScore W2053980954C124504099 @default.
- W2053980954 hasConceptScore W2053980954C126838900 @default.
- W2053980954 hasConceptScore W2053980954C153180895 @default.
- W2053980954 hasConceptScore W2053980954C154945302 @default.
- W2053980954 hasConceptScore W2053980954C166704113 @default.
- W2053980954 hasConceptScore W2053980954C201645570 @default.
- W2053980954 hasConceptScore W2053980954C2524010 @default.
- W2053980954 hasConceptScore W2053980954C31601959 @default.
- W2053980954 hasConceptScore W2053980954C31972630 @default.
- W2053980954 hasConceptScore W2053980954C33923547 @default.
- W2053980954 hasConceptScore W2053980954C41008148 @default.
- W2053980954 hasConceptScore W2053980954C509974204 @default.
- W2053980954 hasConceptScore W2053980954C71924100 @default.
- W2053980954 hasConceptScore W2053980954C89600930 @default.
- W2053980954 hasConceptScore W2053980954C92757383 @default.
- W2053980954 hasIssue "2" @default.
- W2053980954 hasLocation W20539809541 @default.
- W2053980954 hasLocation W20539809542 @default.
- W2053980954 hasOpenAccess W2053980954 @default.
- W2053980954 hasPrimaryLocation W20539809541 @default.
- W2053980954 hasRelatedWork W1669643531 @default.
- W2053980954 hasRelatedWork W1982826852 @default.
- W2053980954 hasRelatedWork W2005437358 @default.
- W2053980954 hasRelatedWork W2008656436 @default.
- W2053980954 hasRelatedWork W2023558673 @default.
- W2053980954 hasRelatedWork W2024152175 @default.
- W2053980954 hasRelatedWork W2110230079 @default.
- W2053980954 hasRelatedWork W2134924024 @default.
- W2053980954 hasRelatedWork W2517104666 @default.