Matches in SemOpenAlex for { <https://semopenalex.org/work/W2054020900> ?p ?o ?g. }
- W2054020900 endingPage "1237" @default.
- W2054020900 startingPage "1225" @default.
- W2054020900 abstract "In this work the radial basis function neural network architecture is used to model the dynamics of Distributed Parameter Systems (DPSs). Two pure data driving schemes which do not require knowledge of the governing equations are described and compared. In the first method, the neural network methodology generates the full model of the system that is able to predict the process outputs at any spatial point. Past values of the process inputs and the coordinates of the specific location provide the input information to the model. The second method uses empirical basis functions produced by the Singular Value Decomposition (SVD) on the snapshot matrix to describe the spatial behavior of the system, while the neural network model is used to estimate only the temporal coefficients. The models produced by both methods are then implemented in Model Predictive Control (MPC) configurations, suitable for constrained DPSs. The accuracies of the modeling methodologies and the efficiencies of the proposed MPC formulations are tested in a tubular reactor and produce encouraging results." @default.
- W2054020900 created "2016-06-24" @default.
- W2054020900 creator A5017246181 @default.
- W2054020900 creator A5039680286 @default.
- W2054020900 date "2008-06-01" @default.
- W2054020900 modified "2023-10-16" @default.
- W2054020900 title "Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models" @default.
- W2054020900 cites W1963846679 @default.
- W2054020900 cites W1967322671 @default.
- W2054020900 cites W1968586944 @default.
- W2054020900 cites W1972005403 @default.
- W2054020900 cites W1972549003 @default.
- W2054020900 cites W1978436662 @default.
- W2054020900 cites W1984474823 @default.
- W2054020900 cites W1990595104 @default.
- W2054020900 cites W1996148470 @default.
- W2054020900 cites W1997138061 @default.
- W2054020900 cites W2003535535 @default.
- W2054020900 cites W2011581571 @default.
- W2054020900 cites W2012068875 @default.
- W2054020900 cites W2017154459 @default.
- W2054020900 cites W2019341732 @default.
- W2054020900 cites W2020808853 @default.
- W2054020900 cites W2023040560 @default.
- W2054020900 cites W2024793254 @default.
- W2054020900 cites W2031949364 @default.
- W2054020900 cites W2033210625 @default.
- W2054020900 cites W2033693003 @default.
- W2054020900 cites W2040278456 @default.
- W2054020900 cites W2065135854 @default.
- W2054020900 cites W2068357564 @default.
- W2054020900 cites W2072248197 @default.
- W2054020900 cites W2073218866 @default.
- W2054020900 cites W2076413768 @default.
- W2054020900 cites W2078878011 @default.
- W2054020900 cites W2081324947 @default.
- W2054020900 cites W2082151106 @default.
- W2054020900 cites W2082283639 @default.
- W2054020900 cites W2083497822 @default.
- W2054020900 cites W2083820783 @default.
- W2054020900 cites W2084052726 @default.
- W2054020900 cites W2085049002 @default.
- W2054020900 cites W2092419013 @default.
- W2054020900 cites W2135479785 @default.
- W2054020900 cites W2140993382 @default.
- W2054020900 cites W2144044658 @default.
- W2054020900 cites W2144676805 @default.
- W2054020900 cites W2170716704 @default.
- W2054020900 cites W2172191484 @default.
- W2054020900 cites W2173760388 @default.
- W2054020900 cites W2788378598 @default.
- W2054020900 cites W4376848484 @default.
- W2054020900 doi "https://doi.org/10.1016/j.compchemeng.2007.05.002" @default.
- W2054020900 hasPublicationYear "2008" @default.
- W2054020900 type Work @default.
- W2054020900 sameAs 2054020900 @default.
- W2054020900 citedByCount "98" @default.
- W2054020900 countsByYear W20540209002012 @default.
- W2054020900 countsByYear W20540209002013 @default.
- W2054020900 countsByYear W20540209002014 @default.
- W2054020900 countsByYear W20540209002015 @default.
- W2054020900 countsByYear W20540209002016 @default.
- W2054020900 countsByYear W20540209002017 @default.
- W2054020900 countsByYear W20540209002018 @default.
- W2054020900 countsByYear W20540209002019 @default.
- W2054020900 countsByYear W20540209002020 @default.
- W2054020900 countsByYear W20540209002021 @default.
- W2054020900 countsByYear W20540209002022 @default.
- W2054020900 countsByYear W20540209002023 @default.
- W2054020900 crossrefType "journal-article" @default.
- W2054020900 hasAuthorship W2054020900A5017246181 @default.
- W2054020900 hasAuthorship W2054020900A5039680286 @default.
- W2054020900 hasConcept C105795698 @default.
- W2054020900 hasConcept C111919701 @default.
- W2054020900 hasConcept C11413529 @default.
- W2054020900 hasConcept C121332964 @default.
- W2054020900 hasConcept C127413603 @default.
- W2054020900 hasConcept C134306372 @default.
- W2054020900 hasConcept C154945302 @default.
- W2054020900 hasConcept C155386361 @default.
- W2054020900 hasConcept C158622935 @default.
- W2054020900 hasConcept C172205157 @default.
- W2054020900 hasConcept C174998907 @default.
- W2054020900 hasConcept C21547014 @default.
- W2054020900 hasConcept C22789450 @default.
- W2054020900 hasConcept C2775924081 @default.
- W2054020900 hasConcept C33923547 @default.
- W2054020900 hasConcept C41008148 @default.
- W2054020900 hasConcept C47446073 @default.
- W2054020900 hasConcept C50644808 @default.
- W2054020900 hasConcept C55037315 @default.
- W2054020900 hasConcept C55282118 @default.
- W2054020900 hasConcept C5917680 @default.
- W2054020900 hasConcept C62520636 @default.
- W2054020900 hasConcept C76956256 @default.
- W2054020900 hasConcept C98045186 @default.
- W2054020900 hasConcept C98856871 @default.
- W2054020900 hasConceptScore W2054020900C105795698 @default.