Matches in SemOpenAlex for { <https://semopenalex.org/work/W2054119649> ?p ?o ?g. }
- W2054119649 endingPage "341" @default.
- W2054119649 startingPage "333" @default.
- W2054119649 abstract "A single nanopore represents an amazingly versatile single-molecule probe that can be employed to reveal several important features of polypeptides, such as their folding state, backbone flexibility, mechanical stability, binding affinity to other interacting ligands and enzymatic activity. Moreover, groundwork in this area using engineered protein nanopores has demonstrated new opportunities for discovering the biophysical rules that govern the transport of proteins through transmembrane protein pores. In this review, I summarize the current knowledge in the field and discuss how nanopore probe techniques will provide a new generation of research tools in nanomedicine for quantitatively examining the details of complex recognition and, furthermore, will represent a crucial step in designing other pore-based nanostructures and high-throughput devices for molecular biomedical diagnosis. A single nanopore represents an amazingly versatile single-molecule probe that can be employed to reveal several important features of polypeptides, such as their folding state, backbone flexibility, mechanical stability, binding affinity to other interacting ligands and enzymatic activity. Moreover, groundwork in this area using engineered protein nanopores has demonstrated new opportunities for discovering the biophysical rules that govern the transport of proteins through transmembrane protein pores. In this review, I summarize the current knowledge in the field and discuss how nanopore probe techniques will provide a new generation of research tools in nanomedicine for quantitatively examining the details of complex recognition and, furthermore, will represent a crucial step in designing other pore-based nanostructures and high-throughput devices for molecular biomedical diagnosis. an oligonucleotide or peptide that binds to specific molecular targets, such as small molecules, nucleic acids, and proteins. Aptamers are used in biotechnological applications and therapeutics because they represent molecular recognition elements, which are more robust alternatives to traditonally employed antibodies. atomic force microscopes contain a spring-mounted probe for imaging individual molecules on the surface of a material. The probe is a sharp micro-scale tip attached to a cantilever and is used to scan the surface. When the tip is moved near a surface, various forces between the tip and the sample produce a deflection of the cantilever. AFM can also be used to determine force–distance curves. the half-side of a cuvette for planar lipid bilayers that corresponds to the extracellular side of the β-barrel protein pores. a mechanics approach that uses simplified models and stochastic differential equations to justify omitted degrees of freedom. a device that consists of optical elements and that is used for probing molecules, cells and tissues. an instrument that employs a laser beam to provide an attractive or repulsive force, in the order of piconewtons, to manipulate microscopic or nanoscopic dielectric objects. Optical tweezers have been used extensively in studying the motion and dynamics of biopolymers. a technique that detects conductance fluctuations caused by single fluid-born particles that transit a nanopore. Resistive-pulse devices combine traditional approaches of microfluidics and nanofluidics with electronic detection. the half-side of a cuvette for planar lipid bilayers that corresponds to the periplasmic side of the β-barrel protein pores." @default.
- W2054119649 created "2016-06-24" @default.
- W2054119649 creator A5023774913 @default.
- W2054119649 date "2009-06-01" @default.
- W2054119649 modified "2023-10-09" @default.
- W2054119649 title "Interrogating single proteins through nanopores: challenges and opportunities" @default.
- W2054119649 cites W1546470600 @default.
- W2054119649 cites W1560940442 @default.
- W2054119649 cites W1592730805 @default.
- W2054119649 cites W1966861188 @default.
- W2054119649 cites W1969615033 @default.
- W2054119649 cites W1970231182 @default.
- W2054119649 cites W1972720178 @default.
- W2054119649 cites W1973684861 @default.
- W2054119649 cites W1976157304 @default.
- W2054119649 cites W1978941223 @default.
- W2054119649 cites W1979896410 @default.
- W2054119649 cites W1981431236 @default.
- W2054119649 cites W1982651400 @default.
- W2054119649 cites W1982747655 @default.
- W2054119649 cites W1983861942 @default.
- W2054119649 cites W1985155893 @default.
- W2054119649 cites W1985568538 @default.
- W2054119649 cites W1989531795 @default.
- W2054119649 cites W1993603706 @default.
- W2054119649 cites W1994660369 @default.
- W2054119649 cites W1997918340 @default.
- W2054119649 cites W2002189507 @default.
- W2054119649 cites W2006997056 @default.
- W2054119649 cites W2009292770 @default.
- W2054119649 cites W2009886994 @default.
- W2054119649 cites W2012037853 @default.
- W2054119649 cites W2013277929 @default.
- W2054119649 cites W2017216510 @default.
- W2054119649 cites W2021448385 @default.
- W2054119649 cites W2025583382 @default.
- W2054119649 cites W2028257890 @default.
- W2054119649 cites W2029672283 @default.
- W2054119649 cites W2030683115 @default.
- W2054119649 cites W2046373787 @default.
- W2054119649 cites W2046381161 @default.
- W2054119649 cites W2048667237 @default.
- W2054119649 cites W2051141018 @default.
- W2054119649 cites W2056386145 @default.
- W2054119649 cites W2057448845 @default.
- W2054119649 cites W2057566034 @default.
- W2054119649 cites W2061307099 @default.
- W2054119649 cites W2063041615 @default.
- W2054119649 cites W2070813536 @default.
- W2054119649 cites W2071599250 @default.
- W2054119649 cites W2072350671 @default.
- W2054119649 cites W2074643144 @default.
- W2054119649 cites W2077788057 @default.
- W2054119649 cites W2078643022 @default.
- W2054119649 cites W2085458671 @default.
- W2054119649 cites W2086183656 @default.
- W2054119649 cites W2089567367 @default.
- W2054119649 cites W2091025649 @default.
- W2054119649 cites W2092042046 @default.
- W2054119649 cites W2092212984 @default.
- W2054119649 cites W2094735584 @default.
- W2054119649 cites W2099026571 @default.
- W2054119649 cites W2100187227 @default.
- W2054119649 cites W2105784500 @default.
- W2054119649 cites W2122159959 @default.
- W2054119649 cites W2122541606 @default.
- W2054119649 cites W2126534292 @default.
- W2054119649 cites W2127407003 @default.
- W2054119649 cites W2141848451 @default.
- W2054119649 cites W2152698588 @default.
- W2054119649 cites W2155147384 @default.
- W2054119649 cites W2155168718 @default.
- W2054119649 cites W2158483456 @default.
- W2054119649 cites W2161696543 @default.
- W2054119649 cites W2167441750 @default.
- W2054119649 cites W2467984685 @default.
- W2054119649 doi "https://doi.org/10.1016/j.tibtech.2009.02.008" @default.
- W2054119649 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19394097" @default.
- W2054119649 hasPublicationYear "2009" @default.
- W2054119649 type Work @default.
- W2054119649 sameAs 2054119649 @default.
- W2054119649 citedByCount "160" @default.
- W2054119649 countsByYear W20541196492012 @default.
- W2054119649 countsByYear W20541196492013 @default.
- W2054119649 countsByYear W20541196492014 @default.
- W2054119649 countsByYear W20541196492015 @default.
- W2054119649 countsByYear W20541196492016 @default.
- W2054119649 countsByYear W20541196492017 @default.
- W2054119649 countsByYear W20541196492018 @default.
- W2054119649 countsByYear W20541196492019 @default.
- W2054119649 countsByYear W20541196492020 @default.
- W2054119649 countsByYear W20541196492021 @default.
- W2054119649 countsByYear W20541196492022 @default.
- W2054119649 countsByYear W20541196492023 @default.
- W2054119649 crossrefType "journal-article" @default.
- W2054119649 hasAuthorship W2054119649A5023774913 @default.
- W2054119649 hasConcept C105795698 @default.
- W2054119649 hasConcept C119599485 @default.