Matches in SemOpenAlex for { <https://semopenalex.org/work/W2054156171> ?p ?o ?g. }
- W2054156171 endingPage "1319" @default.
- W2054156171 startingPage "1300" @default.
- W2054156171 abstract "A sampling strategy to define elementary sampling units (ESUs) for an entire site at the kilometer scale is an important step in the validation process for moderate-resolution leaf area index (LAI) products. Current LAI-sampling strategies are unable to consider the vegetation seasonal changes and are better suited for single-day LAI product validation, whereas the increasingly used wireless sensor network for LAI measurement (LAINet) requires an optimal sampling strategy across both spatial and temporal scales. In this study, we developed an efficient and robust LAI Sampling strategy based on Multi-temporal Prior knowledge (SMP) for long-term, fixed-position LAI observations. The SMP approach employed multi-temporal vegetation index (VI) maps and the vegetation classification map as a priori knowledge. The SMP approach minimized the multi-temporal bias of the VI frequency histogram between the ESUs and the entire site and maximized the nearest-neighbor index to ensure that ESUs were dispersed in the geographical space. The SMP approach was compared with four sampling strategies including random sampling, systematic sampling, sampling based on the land-cover map and a sampling strategy based on vegetation index prior knowledge using the PROSAIL model-based simulation analysis in the Heihe River basin. The results indicate that the ESUs selected using the SMP method spread more evenly in both the multi-temporal feature space and geographical space over the vegetation cycle. By considering the temporal changes in heterogeneity, the average root-mean-square error (RMSE) of the LAI reference maps can be reduced from 0.12 to 0.05, and the relative error can be reduced from 6.1% to 2.2%. The SMP technique was applied to assign the LAINet ESU locations at the Huailai Remote Sensing Experimental Station in Beijing, China, from 4 July to 28 August 2013, to validate three MODIS C5 LAI products. The results suggest that the average R2, RMSE, bias and relative uncertainty for the three MODIS LAI products were 0.60, 0.33, −0.11, and 12.2%, respectively. The MCD15A2 product performed best, exhibiting a RMSE of 0.20, a bias of −0.07 and a relative uncertainty of 7.4%. Future efforts are needed to obtain more long-term validation datasets using the SMP approach on different vegetation types for validating moderate-resolution LAI products in time series." @default.
- W2054156171 created "2016-06-24" @default.
- W2054156171 creator A5001902532 @default.
- W2054156171 creator A5011845704 @default.
- W2054156171 creator A5012677271 @default.
- W2054156171 creator A5018009227 @default.
- W2054156171 creator A5027682300 @default.
- W2054156171 creator A5046277669 @default.
- W2054156171 creator A5067681796 @default.
- W2054156171 creator A5076007515 @default.
- W2054156171 date "2015-01-26" @default.
- W2054156171 modified "2023-09-27" @default.
- W2054156171 title "An Optimal Sampling Design for Observing and Validating Long-Term Leaf Area Index with Temporal Variations in Spatial Heterogeneities" @default.
- W2054156171 cites W1969422238 @default.
- W2054156171 cites W1969801270 @default.
- W2054156171 cites W1970972243 @default.
- W2054156171 cites W1977422739 @default.
- W2054156171 cites W1980879303 @default.
- W2054156171 cites W1986134545 @default.
- W2054156171 cites W1997904108 @default.
- W2054156171 cites W1998776407 @default.
- W2054156171 cites W2008254003 @default.
- W2054156171 cites W2012673788 @default.
- W2054156171 cites W2013018318 @default.
- W2054156171 cites W2017010640 @default.
- W2054156171 cites W2023312901 @default.
- W2054156171 cites W2029984822 @default.
- W2054156171 cites W2032571483 @default.
- W2054156171 cites W2037664828 @default.
- W2054156171 cites W2041906034 @default.
- W2054156171 cites W2044624560 @default.
- W2054156171 cites W2048040783 @default.
- W2054156171 cites W2049763161 @default.
- W2054156171 cites W2058214432 @default.
- W2054156171 cites W2065812289 @default.
- W2054156171 cites W2087987077 @default.
- W2054156171 cites W2097110832 @default.
- W2054156171 cites W2108134942 @default.
- W2054156171 cites W2111979722 @default.
- W2054156171 cites W2121025745 @default.
- W2054156171 cites W2124233655 @default.
- W2054156171 cites W2124564759 @default.
- W2054156171 cites W2125144297 @default.
- W2054156171 cites W2125763679 @default.
- W2054156171 cites W2130267033 @default.
- W2054156171 cites W2131126673 @default.
- W2054156171 cites W2133497656 @default.
- W2054156171 cites W2136302747 @default.
- W2054156171 cites W2151647593 @default.
- W2054156171 cites W2152721423 @default.
- W2054156171 cites W2154964583 @default.
- W2054156171 cites W2156402689 @default.
- W2054156171 cites W2166964044 @default.
- W2054156171 cites W61452412 @default.
- W2054156171 doi "https://doi.org/10.3390/rs70201300" @default.
- W2054156171 hasPublicationYear "2015" @default.
- W2054156171 type Work @default.
- W2054156171 sameAs 2054156171 @default.
- W2054156171 citedByCount "29" @default.
- W2054156171 countsByYear W20541561712015 @default.
- W2054156171 countsByYear W20541561712016 @default.
- W2054156171 countsByYear W20541561712017 @default.
- W2054156171 countsByYear W20541561712018 @default.
- W2054156171 countsByYear W20541561712019 @default.
- W2054156171 countsByYear W20541561712020 @default.
- W2054156171 countsByYear W20541561712021 @default.
- W2054156171 countsByYear W20541561712022 @default.
- W2054156171 countsByYear W20541561712023 @default.
- W2054156171 crossrefType "journal-article" @default.
- W2054156171 hasAuthorship W2054156171A5001902532 @default.
- W2054156171 hasAuthorship W2054156171A5011845704 @default.
- W2054156171 hasAuthorship W2054156171A5012677271 @default.
- W2054156171 hasAuthorship W2054156171A5018009227 @default.
- W2054156171 hasAuthorship W2054156171A5027682300 @default.
- W2054156171 hasAuthorship W2054156171A5046277669 @default.
- W2054156171 hasAuthorship W2054156171A5067681796 @default.
- W2054156171 hasAuthorship W2054156171A5076007515 @default.
- W2054156171 hasBestOaLocation W20541561711 @default.
- W2054156171 hasConcept C105795698 @default.
- W2054156171 hasConcept C106131492 @default.
- W2054156171 hasConcept C119666444 @default.
- W2054156171 hasConcept C121332964 @default.
- W2054156171 hasConcept C139945424 @default.
- W2054156171 hasConcept C140779682 @default.
- W2054156171 hasConcept C142724271 @default.
- W2054156171 hasConcept C144024400 @default.
- W2054156171 hasConcept C149923435 @default.
- W2054156171 hasConcept C1549246 @default.
- W2054156171 hasConcept C18903297 @default.
- W2054156171 hasConcept C205649164 @default.
- W2054156171 hasConcept C25989453 @default.
- W2054156171 hasConcept C2776133958 @default.
- W2054156171 hasConcept C2778755073 @default.
- W2054156171 hasConcept C2780376076 @default.
- W2054156171 hasConcept C2908647359 @default.
- W2054156171 hasConcept C31972630 @default.
- W2054156171 hasConcept C33923547 @default.
- W2054156171 hasConcept C39432304 @default.