Matches in SemOpenAlex for { <https://semopenalex.org/work/W2054167297> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2054167297 endingPage "1593" @default.
- W2054167297 startingPage "1586" @default.
- W2054167297 abstract "This study sought to assess the usefulness and accuracy of artificial neural networks in the prognosis of 1-year mortality in patients with heart failure. Artificial neural networks is a computational technique used to represent and process information by means of networks of interconnected processing elements, similar to neurons. They have found applications in medical decision support systems, particularly in prognosis. Clinical and Doppler-derived echocardiographic data from 95 consecutive patients with diffuse impairment of myocardial contractility were studied. After 1 year, data regarding survival or death were obtained and produced the prognostic variable. The data base was divided randomly into a training data set (47 cases, 8 deaths) and a testing data set (48 cases, 7 deaths). Results of artificial neural network classification were compared with those from linear discriminant analysis, clinical judgment and conventional heuristically based programs. The study group included 57 male (47 survivors) and 38 female patients (33 survivors). Linear discriminant analysis was not efficient for separating survivors from nonsurvivors because the accuracy at the ideal cutoff value was only 67.4%, with a sensitivity of 67.5%, positive predictive value of 27.8% and negative predictive value of 91.5%. In contrast, all artificial neural networks were able to predict outcome with an accuracy of 90%, specificity of 93% and sensitivity of 71.4%, for the best artificial neural network. Both clinical judgment and automatic heuristic methods were also inferior in performance. The artificial neural network method has proved to be reliable for implementing quantitative prognosis of mortality in patients with heart failure. Additional studies with larger numbers of patients are required to better assess the usefulness of artificial neural networks." @default.
- W2054167297 created "2016-06-24" @default.
- W2054167297 creator A5027737446 @default.
- W2054167297 creator A5032858461 @default.
- W2054167297 creator A5038978583 @default.
- W2054167297 creator A5044137595 @default.
- W2054167297 date "1995-12-01" @default.
- W2054167297 modified "2023-09-30" @default.
- W2054167297 title "One-year mortality prognosis in heart failure: A neural network approach based on echocardiographic data" @default.
- W2054167297 cites W1984420781 @default.
- W2054167297 cites W1998174897 @default.
- W2054167297 cites W2016843869 @default.
- W2054167297 cites W2028752300 @default.
- W2054167297 cites W2049549513 @default.
- W2054167297 cites W2051438834 @default.
- W2054167297 cites W2062884568 @default.
- W2054167297 cites W2075941514 @default.
- W2054167297 cites W2076325922 @default.
- W2054167297 cites W2155199816 @default.
- W2054167297 cites W2167835497 @default.
- W2054167297 cites W4293242440 @default.
- W2054167297 doi "https://doi.org/10.1016/0735-1097(95)00385-1" @default.
- W2054167297 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7594090" @default.
- W2054167297 hasPublicationYear "1995" @default.
- W2054167297 type Work @default.
- W2054167297 sameAs 2054167297 @default.
- W2054167297 citedByCount "41" @default.
- W2054167297 countsByYear W20541672972012 @default.
- W2054167297 countsByYear W20541672972016 @default.
- W2054167297 countsByYear W20541672972018 @default.
- W2054167297 countsByYear W20541672972019 @default.
- W2054167297 countsByYear W20541672972020 @default.
- W2054167297 countsByYear W20541672972021 @default.
- W2054167297 countsByYear W20541672972022 @default.
- W2054167297 countsByYear W20541672972023 @default.
- W2054167297 crossrefType "journal-article" @default.
- W2054167297 hasAuthorship W2054167297A5027737446 @default.
- W2054167297 hasAuthorship W2054167297A5032858461 @default.
- W2054167297 hasAuthorship W2054167297A5038978583 @default.
- W2054167297 hasAuthorship W2054167297A5044137595 @default.
- W2054167297 hasBestOaLocation W20541672972 @default.
- W2054167297 hasConcept C119857082 @default.
- W2054167297 hasConcept C126322002 @default.
- W2054167297 hasConcept C154945302 @default.
- W2054167297 hasConcept C164705383 @default.
- W2054167297 hasConcept C2778198053 @default.
- W2054167297 hasConcept C41008148 @default.
- W2054167297 hasConcept C50644808 @default.
- W2054167297 hasConcept C58489278 @default.
- W2054167297 hasConcept C69738355 @default.
- W2054167297 hasConcept C71924100 @default.
- W2054167297 hasConceptScore W2054167297C119857082 @default.
- W2054167297 hasConceptScore W2054167297C126322002 @default.
- W2054167297 hasConceptScore W2054167297C154945302 @default.
- W2054167297 hasConceptScore W2054167297C164705383 @default.
- W2054167297 hasConceptScore W2054167297C2778198053 @default.
- W2054167297 hasConceptScore W2054167297C41008148 @default.
- W2054167297 hasConceptScore W2054167297C50644808 @default.
- W2054167297 hasConceptScore W2054167297C58489278 @default.
- W2054167297 hasConceptScore W2054167297C69738355 @default.
- W2054167297 hasConceptScore W2054167297C71924100 @default.
- W2054167297 hasIssue "7" @default.
- W2054167297 hasLocation W20541672971 @default.
- W2054167297 hasLocation W20541672972 @default.
- W2054167297 hasLocation W20541672973 @default.
- W2054167297 hasOpenAccess W2054167297 @default.
- W2054167297 hasPrimaryLocation W20541672971 @default.
- W2054167297 hasRelatedWork W1491055865 @default.
- W2054167297 hasRelatedWork W2012241433 @default.
- W2054167297 hasRelatedWork W2039995053 @default.
- W2054167297 hasRelatedWork W2051712573 @default.
- W2054167297 hasRelatedWork W2076843464 @default.
- W2054167297 hasRelatedWork W2077083067 @default.
- W2054167297 hasRelatedWork W2961085424 @default.
- W2054167297 hasRelatedWork W4221088574 @default.
- W2054167297 hasRelatedWork W4247718175 @default.
- W2054167297 hasRelatedWork W4306674287 @default.
- W2054167297 hasVolume "26" @default.
- W2054167297 isParatext "false" @default.
- W2054167297 isRetracted "false" @default.
- W2054167297 magId "2054167297" @default.
- W2054167297 workType "article" @default.